

CryptoServer
PKCS#11 R2

Developer Guide

Imprint

Copyright 2018 Utimaco IS GmbH
Germanusstr. 4
D-52080 Aachen
Germany

Phone +49 (0)241 / 1696-200

Fax +49 (0)241 / 1696-199

Internet http://hsm.utimaco.com

E-mail hsm@utimaco.com

Document Version 1.2.13

Date 2018-06-29

Status Final

Document No. 2012-0007

All Rights reserved No part of this documentation may be reproduced in any form (printing, photocopy or
according to any other process) without the written approval of Utimaco IS GmbH or be
processed, reproduced or distributed using electronic systems.
Utimaco IS GmbH reserves the right to modify or amend the documentation at any time
without prior notice. Utimaco IS GmbH assumes no liability for typographical errors and
damages incurred due to them.
All trademarks and registered trademarks are the property of their respective owners.

http://hsm.utimaco.com/

Table of Contents

 Page 3 of 76

Table of Contents
1 Introduction .. 5

1.1 About this Document .. 5

1.1.1 Target Audience for This Manual ... 5

1.1.2 Contents of This Manual... 5

1.1.3 Document Conventions .. 6

1.2 Recommended Reading ... 6

2 The PKCS#11 R2 Interface - Overview ... 7

3 Requirements .. 8

3.1 Required Firmware Package .. 8

3.2 Location of the Configuration File cs_pkcs11_R2.cfg .. 9

4 Configuration .. 11

4.1 The Parameter Device .. 13

4.2 Logging ... 15

5 Operating Modes ... 17

5.1 Load Balancing Mode ... 17

5.2 Failover Mode ... 19

5.3 Initialization of Slot and User PIN in Failover/Load Balancing Mode 20

6 Internal and External Key Storage ... 22

7 Development of a PKCS#11 Application .. 23

7.1 Libraries .. 23

8 Runtime .. 24

8.1 Initialization .. 24

8.2 Limited Data Length ... 24

8.2.1 Key Wrapping with AES GCM/CCM ... 24

8.2.2 Initialization Vector Length for AES GCM ... 25

8.2.3 Data Length for Key Wrapping with AES GCM/CCM ... 25

8.3 Multithreading .. 25

9 Authentication Concept ... 27

9.1 Standard Authentication Concept .. 27

9.2 Enhanced Authentication Concept ... 28

9.2.1 Create Users with Other Authentication Mechanisms .. 28

9.2.2 Login User with Other Authentication Mechanisms ... 30

9.2.3 Change PIN for Other Authentication Mechanisms .. 32

9.2.4 Authentication via Configuration File ... 33

9.2.5 Automatic Login of Administrator via Configuration File ... 36

9.2.6 Authentication According to the Two-Person Rule .. 36

 Table of Contents

Page 4 of 76

9.2.7 Extended Login ... 37

9.2.8 Key Manager and Key User Role ... 38

9.2.9 Create and Login the Key Manager... 38

10 Key Management Functions in PKCS#11 ... 40

11 Vendor Defined PKCS#11 Extensions .. 43

11.1 CryptoServer Defined Mechanisms .. 43

11.2 Encryption with the “Elliptic Curve Integrated Encryption Scheme” (ECIES) 44

11.3 Sign and Verify Using the DES Retail-MAC... 45

11.4 Multiple Signature Mechanisms ... 45

11.5 Configuration Objects ... 46

11.5.1 Local Configuration Object ... 47

11.5.2 Global CryptoServer Configuration Object ... 47

11.5.3 CryptoServer Slot Configuration Objects ... 54

12 Supported Mechanisms and Function Mapping.. 56

12.1 PKCS#11 Defined Mechanisms .. 56

12.2 Vendor Defined Mechanisms .. 61

12.3 Public Object Support ... 62

13 PKCS#11 API in FIPS Mode ... 64

13.1 Padding Mechanisms in FIPS Mode ... 64

13.2 Key Usage in FIPS Mode... 67

13.3 Mechanisms Supported in FIPS Mode for CryptoServer Se ... 69

13.4 Mechanisms Supported in FIPS Mode for CryptoServer CSe and Se Gen2 71

References .. 75

Introduction

 Page 5 of 76

1 Introduction
Thank you for purchasing our CryptoServer security system. We hope you are satisfied with
our product. Please do not hesitate to contact us if you have any complaints or comments.

1.1 About this Document

This document describes the cryptographic token interface PKCS#11 Release 2, as provided
by Utimaco’s hardware security module CryptoServer with SecurityServer version 3.00 or
higher.

1.1.1 Target Audience for This Manual

This guide is intended to assist software developers by creating their own PKCS#11
application with the CryptoServer PKCS#11 library.

1.1.2 Contents of This Manual

After the introduction this manual is divided up as follows:

Chapter 2 provides an overview about the CryptoServer's PKCS#11 interface.

Chapter 3 contains the necessary prerequisites for the usage of CryptoServer's PKCS#11
interface.

Chapter 4 describes the configuration options of the CryptoServer PKCS#11 library within the
configuration file cs_pkcs11_R2.cfg.

Chapter 5 explains the operating modes of the CryptoServer PKCS#11 library.

Chapter 6 briefly explains the difference between an internal and external key storage for
PKCS#11 objects (keys).

Chapter 7 provides information about the header files and libraries required for the
development of a PKCS#11 application.

Chapter 8 contains details about Utimaco's PKCS#11 implementation for the CryptoServer.

Chapter 9 describes the authentication concept and user management of the CryptoServer
PKCS#11 R2 library.

Chapter 10 contains an overview of the functions that can be executed by the users with the
role Key Manager (KM) or Key User (KU).

Chapter 11 contains details about the vendor defined PKCS#11 extensions.

Chapter 12 is an overview of the mechanisms currently supported by the CryptoServer
PKCS#11 library - both defined by the PKCS#11 standard and vendor defined - and the
functions supporting these mechanisms.

 Introduction

Page 6 of 76

Chapter 13 provides information about important restrictions applying to a CryptoServer
operating in FIPS mode and lists the mechanisms supported by the CryptoServer in FIPS
mode.

1.1.3 Document Conventions

We use the following conventions in this manual:

Convention Usage Example

Bold
Items of the Graphical User Interface
(GUI), e.g., menu options

Press the OK button.

Monospaced
File names, folder and directory
names, commands, file outputs,
programming code samples

You will find the file example.conf in
the /exmp/demo/ directory.

Italic References and important terms

See Chapter 3, "Sample Chapter" in the
CryptoServer LAN/CryptoServer
CryptoServer Command-line Administration
Tool -csadm -Manual for System
Administrators or [CSADMIN].

Table 1: Document conventions

We have used icons to highlight the most important notes and information.

Here you find important safety information that should be followed.

Here you find additional notes or supplementary information.

1.2 Recommended Reading

We highly recommend to read also the document Learning PKCS#11 in Half a Day
(PKCS11_HandsOn.pdf) provided on the SecurityServer product CD in the same folder as this
manual: \Documentation\Crypto_APIs\PKCS11_R2. There you can learn how to develop
PKCS#11 applications.

The PKCS#11 R2 Interface - Overview

 Page 7 of 76

2 The PKCS#11 R2 Interface - Overview
PKCS#11 is a general purpose Public Key Cryptography Standard originally developed by RSA
Security [PKCS11] and currently maintained by the OASIS PKCS11 Technical Committee. It
defines an interface between an application and a cryptographic device.

The CryptoServer provides a PKCS#11 interface. To use this interface a dedicated firmware
package including the CXI firmware module must be loaded into the CryptoServer.
Additionally, it is required that the PKCS#11 application is linked against the CryptoServer
PKCS#11 library or it must be able to load the specific shared library (DLL/so). With this
concept no specific drivers are needed for the application to access the CryptoServer directly.

The CryptoServer PKCS#11 library supports more than one CryptoServer device for each
application.

The CryptoServer can handle up to 256 PKCS#11 sessions or applications per CryptoServer in
parallel.

The CryptoServer PKCS#11 library provides an interface between the host application and one
or more CryptoServer. It communicates directly with the configured CryptoServer or cluster of
CryptoServer. Each CryptoServer can be a local PCI/PCIe plug-in card or a network appliance
CryptoServer LAN.

Several applications on one host PC can access the CryptoServer PKCS#11 library in parallel.
The CryptoServer PKCS#11 library provides also a mechanism to configure several
CryptoServer. They can be accessed with the same library. Each PKCS#11 slot from every
configured CryptoServer can be addressed directly. The CryptoServer PKCS#11 library maps
all existing slots to a unique slot ID.

Host PC

CryptoServer PKCS#11 API

Application 1 ...

CryptoServer #1 (Token)

...Slot 1 Slot i

CryptoServer #2 (Token)

...Slot 1 Slot j

CryptoServer #n (Token)

...Slot 1 Slot k

Application 2 Application n

 Requirements

Page 8 of 76

3 Requirements
To be able to use the CryptoServer PKCS#11 interface make sure that the following
prerequisites are fulfilled.

■ One or more CryptoServer have been installed – local (CryptoServer PCIe card) or remote
(CryptoServer LAN).

■ If a CryptoServer PCIe card is used - the CryptoServer driver has been installed as
described in the corresponding CryptoServer Operating Manual.

■ A valid Master Backup Key has been imported into the CryptoServer.

■ A firmware package which fulfills the minimum requirements has been loaded into the
CryptoServer (see Chapter 3.1, "Required Firmware Package").

■ The application using the CryptoServer PKCS#11 interface can load the CryptoServer
PKCS#11 shared library, or it is linked against a static version of this library.

■ The configuration file cs_pkcs11_R2.cfg is configured correctly (see Chapter 4,
"Configuration") and the CryptoServer PKCS#11 library is able to find and access it (see
Chapter 3.2, "Location of the Configuration File cs_pkcs11_R2.cfg").

For general administration of the CryptoServer you can use one of the CryptoServer’s
administration tools: CAT (Java graphical user interface) or csadm (command line tool). See
[CSMSADM] or [CSADMIN] for help. Additionally, Utimaco provides dedicated tools for the
administration of the PKCS#11 interface on the Security Server product CD resp. CryptoServer
SDK product CD in the folder …\Utimaco\CryptoServer\Administration: p11CAT – a Java
graphical user interface, and a command line tool p11tool2.

3.1 Required Firmware Package

All firmware modules are contained in the CryptoServer firmware package SecurityServer-
<Type>-<Version>.mpkg, where <Type> describes the type of the CryptoServer-Series (CS-
Series, CSe-Series, Se2-Series or Se-Series) and <Version> describes the version of
the package. To load the corresponding firmware package into the CryptoServer, see
[CSMSADM] for details.

A special firmware package is required to ensure that the PKCS#11 interface works properly:
Please use the firmware package provided on the SecurityServer product CD version 3.00 or
higher.

Requirements

 Page 9 of 76

3.2 Location of the Configuration File cs_pkcs11_R2.cfg

After creation of the configuration file, the CryptoServer PKCS#11 library should be able to
locate and load it. There are several possibilities to tell the CryptoServer PKCS#11 library
where the configuration file is located.

■ Set the CS_PKCS11_R2_CFG environment variable to the correct path and location of the
configuration file.

Example for a Windows system:
#> set CS_PKCS11_R2_CFG="C:\My Documents\utimaco\cs_pkcs11_R2.cfg"

Example for a Linux system:
#> CS_PKCS11_R2_CFG=~/.utimaco/cs_pkcs11_R2.cfg

#> export CS_PKCS11_R2_CFG

■ Place the configuration file in the current working directory (useful for development).

■ Place the configuration file in the same directory where the application is located (only
Windows and Linux).

■ The configuration file in a system specific directory (see below).

The CryptoServer PKCS#11 library looks for the cs_pkcs11_R2.cfg configuration file in the
following order:

On Windows operating systems:

1. First it checks if the CS_PKCS11_R2_CFG environment variable is set and if it contains the
name and location of the configuration file.

The CS_PKCS11_R2_CFG environment variable is set, by default, to the correct name and
location of the configuration file during the installation of the product CD:
For the SecurityServer product CD:
- As of version 4.20: C:\ProgramData\cs_pkcs11_R2.cfg.
- Earlier than version 4.20: C:\Program Files\Utimaco\CryptoServer\Lib\cs_pkcs11_R2.cfg.
For the CryptoServer SDK product CD:
C:\Utimaco\CryptoServer\Lib\cs_pkcs11_R2.cfg

2. If not, it checks if the configuration file is located in the user’s home directory
(%USERPROFILE%).

3. If not, it checks if the configuration file is located in the current working directory.

4. If not, it checks if the configuration file is located in the same directory where the
application is located.

 Requirements

Page 10 of 76

5. If not, it checks if the configuration file is located somewhere in %PATH%.

6. If not, it checks if the configuration file is located in the WINDOWS directory (e.g.
c:\WINDOWS).

On Linux operating systems:

1. First it will be checked if the CS_PKCS11_R2_CFG environment variable is set, and if it
contains the name and location of the configuration file.

2. If not, it will be checked if the configuration file is located in the user’s home directory
(~/.utimaco/cs_pkcs11_R2.cfg).

3. If not it will be checked if the configuration file is located in the current working directory.

4. If not, it will be checked if the file is located in the same directory where the executable is
located.

5. If not it, the following path names are checked for the configuration file in the following
order:

/usr/local/etc/utimaco

/usr/local/etc

/etc/utimaco

/etc

Search order under other Unix systems:

1. First it checks if the CS_PKCS11_R2_CFG environment variable is set and if it contains the
name and location of the configuration file.

2. If not, it checks if the configuration file is located in the user's home directory
(~/.utimaco/cs_pkcs11_R2.cfg).

3. If not, it checks whether the configuration file is located in the current working directory.

4. If not, the following path names are checked for the configuration file in the given order:

/usr/local/etc/utimaco

/usr/local/etc

/etc/utimaco

/etc

Configuration

 Page 11 of 76

4 Configuration
The configuration of the CryptoServer PKCS#11 library is done within the cs_pkcs11_R2.cfg
configuration file. For details about the location of the configuration file, see Chapter 3.2,
"Location of the Configuration File cs_pkcs11_R2.cfg". This file can contain several sections:

■ [Global]- section for general configuration

■ [CryptoServer] - section for each CryptoServer device that should be addressed by the
application

■ [Slot] – (optional) section for every slot that is in use.

The following table gives an overview of all parameter that can be configured in the
cs_pkcs11_R2.cfg configuration file.

Parameter Description

Logging Specifies the log level 0, 1, 2, 3 or 4 (see chapter 4.2 for details).

Logpath Specifies the path where the logfile shall be created. In case of /tmp
directory e.g., where the sticky bit is set, file deletion and therefore log
rotation is not possible. The logfile might grow above the limit given
by the “Logsize” parameter.

Logsize Defines the maximum size of the logfile. If the maximum is reached,a
log rotation is performed overwriting a previously backed up logfile.
Can be defined as value in bytes or as formatted text. E.g. value of
‘1000’ means logsize is 1000 bytes whereas value of ‘1000kb’ means
1000 kilobytes. Allowed formats are 'kb', 'mb' and 'gb'.

KeysExternal Specifies the default behavior for object creation and generation. If
“true”, new created or generated objects will be stored in an external
key storage, i.e., a key database outside the CryptoServer.

KeyStore Specifies the path to the external key storage (e.g.
C:/utimaco/P11.sdb). This parameter must be set if
KeysExternal = true.

SlotMultiSession Specifies session connection behavior. If “true”, every session
establishes its own connection to the CryptoServer.

SlotCount Maximum number of slots that can be used. Per default the
CryptoServer has 10 configured slots available. To avoid that the
application scans all configured slots the maximum number can be
reduced with the configuration item.

 Configuration

Page 12 of 76

Parameter Description

KeepLeadZeros Defines if leading zeros of a decryption operation will be kept (true or
false)

FallbackInterval Configures load balancing mode (FallbackInterval = 0, default)
or failover mode (FallbackInterval > 0)

KeepAlive Keep sessions alive and prevent them from expiring after 15 minutes
idle time (true or false)

Device Device address to connect a CryptoServer device (see chapter 4.1)

ConnectionTimeout Specifies the maximum time in milliseconds to wait before the
connection establishment is aborted if the device is not responding.

CommandTimeout Specifies the maximum time in milliseconds to wait for the answer
from CryptoServer after sending a command.

SlotNumber Number of the slot to be configured

<username> Defines the authentication mechanism of the user with name
<username> (see Chapter 11.2, “Authentication via Configuration File”)

ExtendedLoginSO Activates extended login for the SO

ExtendedLoginUSER Activates extended login for the USER

CustomMechanisms List of official PKCS#11 mechanisms which should be customized

Table 2: Configuration parameter in the cs_pkcs11_R2.cfg configuration file

Some parameters can be defined in more than one section. For example, the parameter
KeysExternal is evaluated in the [Global] section, the [CryptoServer] section and the
[Slot] section. Thereby the parameter in the section with the highest priority is evaluated
first. If the parameter is not set, the parameter in the next lower section is evaluated. If the
parameter is not set somewhere, the default value is used. The evaluation starts with the Slot
section (highest priority) and ends with the default values (lowest priority):

■ [Slot]

■ [CryptoServer]

■ [Global]

■ Default

The following table shows the default values for all parameters and the section where they
can be defined.

Parameter Allowed Sections Default Value

Configuration

 Page 13 of 76

Parameter Allowed Sections Default Value

Logging [Global] 0 (NONE)

Logpath [Global] No default value (no logfile is
created per default).

Logsize [Global] 1 000 000

KeysExternal [Global], [CryptoServer], [Slot] false

KeyStore [Global] No default path (no external key
storage is created per default)

SlotMultiSession [Global], [CryptoServer], [Slot] true

SlotCount [Global], [CryptoServer] 10

KeepLeadZeros [Global] false

FallbackInterval [Global] 0

KeepAlive [Global], [CryptoServer], [Slot] false

Device [CryptoServer] No default value (value must be
defined)

ConnectionTimeout [Global], [CryptoServer] 5000

CommandTimeout [Global], [CryptoServer] 60000

SlotNumber [Slot] No default value (device address
must be defined)

<username> [Slot] No default value

ExtendedLoginSO [Slot] No default value

ExtendedLoginUSER [Slot] No default value

CustomMechanisms [Global] No default value

Table 3: Default settings for the parameters in the cs_pkcs11_R2.cfg configuration file

4.1 The Parameter Device

There are several possibilities to address the CryptoServer with the Device configuration
parameter.

Here are some examples:

 Configuration

Page 14 of 76

Address Description

/dev/cs2.n

where n = {0, 1, 2, …, 7}

Local CryptoServer No. n+1 on a UNIX system.

The maximum number of eight CryptoServer PCIe cards can be
changed in the source of the Linux driver.

PCI:n

where n = {0, 1, 2, …, 31}

Local CryptoServer No. n+1 on a Windows system

TCP:288@194.168.4.107 IP address and port number of a CryptoServer LAN

In commands, always use IP addresses without leading zeros
although they are shown in the CryptoServer LAN display, e.g.,
194.168.004.107.

TCP:194.168.4.107 IP address of a CryptoServer LAN (default: port=288)

In commands, always use IP addresses without leading zeros
although they are shown in the CryptoServer LAN display, e.g.,
194.168.004.107.

194.168.4.107 IP address of a CryptoServer LAN (default: protocol=TCP,
port=288)

In commands, always use IP addresses without leading zeros
although they are shown in the CryptoServer LAN display, e.g.,
194.168.004.107.

TCP:288@cslan01 Host name and port number of a CryptoServer LAN (using DNS
request to resolve host name)

TCP:cslan01 Host name of a CryptoServer LAN (using DNS request to resolve
host name, default: port=288)

cslan01 Host name of a CryptoServer LAN (using DNS request to resolve
host name, default: protocol=TCP, port=288)

TCP:3001@127.0.0.1 or

TCP:3001@localhost

Protocol, IP address and port number of the local CryptoServer
simulator for Windows/Linux (SDK). The simulator can be used for
test and evaluation purposes; see [CSMSADM] for further details.

3001@127.0.0.1 or

3001@localhost

IP address and port number of the local CryptoServer Simulator
for Windows/Linux (SDK) with the default protocol TCP. The
simulator can be used for test and evaluation purposes; see
[CSMSADM] for further details.

Table 4: Examples for setting the Device parameter

Example of the configuration file cs_pkcs11_R2.cfg:
[Global]

Configuration

 Page 15 of 76

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

KeysExternal = true

KeyStore = c:/global/P11.sdb

KeepLeadZeros = true

KeepAlive = true

ConnectionTimeout = 7000

CommandTimeout = 70000

CryptoServer is a CryptoServer LAN

[CryptoServer]

Device = 192.168.4.137

CommandTimeout = 80000

SlotCount = 3

SlotMultiSession = true

first slot

[Slot]

SlotNumber = 0

KeysExternal = true

4.2 Logging

The logging interface of the CryptoServer PKCS#11 library shall be used only when problems
have occurred. Depending on the configuration, information like returned error codes, called
functions, etc. are logged. By default, the log level (parameter Logging) is set to NONE.

Name Level Description

NONE 0 No logging output will be produced (default).

ERROR 1 Log errors of the CryptoServer PKCS#11 library and CryptoServer firmware
modules

WARNING 2 Log errors and warnings of the CryptoServer PKCS#11 library and CryptoServer
modules

INFO 3 Log errors and warnings of the CryptoServer PKCS#11 library and CryptoServer
firmware modules. Additionally, information of the CryptoServer PKCS#11 library
will be logged.

 Configuration

Page 16 of 76

TRACE 4 Log errors, warnings and information of the CryptoServer PKCS#11 library and
CryptoServer firmware modules. Additionally, trace output like function calls will
be logged.

Table 5: Logging levels

It is not recommended to raise the logging level higher than WARNING on production
systems. It slows down the application and it writes permanently into the logfile.

Operating Modes

 Page 17 of 76

5 Operating Modes
This chapter describes the operating modes of the CryptoServer PKCS#11 library.

The CryptoServer PKCS#11 library can be used in either load balancing or failover mode.

Preconditions

Before you start configuring and using the CryptoServer PKCS#11 library in either mode make
sure that the following preconditions are fulfilled:

We recommend to read Chapter "Clustering for Load Balancing and Failover" in [CSMSADM]
before you start configuring and using the CryptoServer PKCS#11 library in either load
balancing or failover mode.

■ You have initialized the same PKCS#11 slot on every CryptoServer that belongs to the
CryptoServer cluster.

■ You have created the same user Security Officer (SO) on every CryptoServer that belongs
to the CryptoServer cluster.

■ You have created the same user User on every CryptoServer that belongs to the
CryptoServer cluster.

Make sure that the preconditions mentioned in Chapter "Clustering for Load Balancing and
Failover" in [CSMSADM] (provided on the delivered product CD in folder
…\Documentation\Administration Guides) are also fulfilled.

5.1 Load Balancing Mode

In load balancing mode multiple CryptoServer devices are linked together to one logical device
also known as a cluster. This is done by setting a list of all (physical) CryptoServer devices as
Device parameter in the cs_pkcs11_R2.cfg configuration file, embraced in “{}” brackets, and
keeping the default setting FallbackInterval = 0 unchanged. In this case the devices can
be simultaneously used to distribute the connection processing across the clustered devices.

A cs_pkcs11_R2.cfg configuration file in load balancing mode could look for example as
follows:
[Global]

 Operating Modes

Page 18 of 76

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

KeysExternal = true

KeyStore = c:/global/P11.sdb

Configures load balancing mode (== 0) or failover mode (> 0)

FallbackInterval = 0

SlotCount = 5

logical CryptoServer device consisting of three CryptoServer LAN

devices

[CryptoServer]

Device = { 192.168.0.136 192.168.0.137 192.168.0.138}

ConnectionTimeout = 70000

The resulting slot IDs of the CryptoServer in the example above are:

CryptoServer Device (logical) Slot ID (deviceID slot ID)

192.168.0.136 192.168.0.137 192.168.0.138

0x 0000 0000

0x 0000 0001

0x 0000 0002

0x 0000 0003

0x 0000 0004

Table 6: Example for Slot IDs in a Load Balancing mode

To access, e.g. the second slot on the logical device use the slot ID 0x00000001. The
CryptoServer PKCS#11 library then decides which CryptoServer is used for this connection
request, and establishes the connection to the CryptoServer with the least connections.

For example, if the requesting application has one open connection to each of the devices
192.168.4.136 and 192.168.4.138, the CryptoServer PKCS#11 library will open the next
connection to the device 192.168.4.137.

In load balancing mode, always use external keys. If want to use internal keys, contact the
support department of Utimaco IS GmbH first to clarify the steps to be performed..

Operating Modes

 Page 19 of 76

5.2 Failover Mode

In failover mode multiple devices are linked together to one logical device also known as a
cluster. This is done by setting a list of all (physical) CryptoServer devices as Device
parameter, embraced in “{}” brackets and setting the FallbackInterval parameter to the
time interval [s] after which a re-connection attempt to the Primary CryptoServer should be
started.

A cs_pkcs11_R2.cfg configuration file in failover mode could look for example as follows:
[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

KeysExternal = true

KeyStore = c:/global/P11.sdb

Configures load balancing mode (== 0) or failover mode (> 0)

FallbackInterval = 3600

SlotCount = 3

logical CryptoServer device consisting of two CryptoServer LAN devices

192.168.4.136 and 192.168.4.137

[CryptoServer]

Device = { 192.168.4.136 192.168.0.137 }

ConnectionTimeout = 70000

The resulting slot IDs of the CryptoServer for the example above are:

CryptoServer Device (logical) Slot ID (deviceID slot ID)

192.168.4.136 192.168.0.137

0x 0000 0000

0x 0000 0001

0x 0000 0002

Table 7: Example for Slot IDs in Failover mode

To access, e.g. the second slot on the logical device, use the slot ID 0x00000001. In this
mode, the CryptoServer PKCS#11 library decides which CryptoServer is used. If the
CryptoServer PKCS#11 library detects an error on the current device, it switches to the "next"
device in the cluster.

For example, the device 192.168.4.136 has an error, the CryptoServer PKCS#11 library
automatically switches to the device 192.168.4.137.

 Operating Modes

Page 20 of 76

Failover mode shall not be used for functions manipulating users or internal keys like
C_InitToken, C_InitPIN, C_SetPIN, C_CreateObject, C_CopyObject,
C_DestroyObject, C_SetAttributeValue, C_UnwrapKey, C_DeriveKey.
Therefore, if you are operating a CryptoServer failover cluster, do not use p11tool2 or
PKCS#11 CryptoServer Administration Tool (P11CAT) for key management.

5.3 Initialization of Slot and User PIN in Failover/Load Balancing
Mode

The functions C_InitToken, C_InitPIN and C_SetPIN create respectively modify the user
accounts for PKCS#11 Security Officer and PKCS#11 User in a CryptoServer. When executing
any of these commands on a logical device, the command will only be executed on a single of
the physical devices, no matter whether the logical device represents a cluster for failover or a
cluster for load balancing. The PKCS#11 user accounts will not be created or modified on any
other than this single physical device, causing subsequent PKCS#11 connections to fail if they
are not “accidentally” opened on the physical device on which the PKCS#11 user accounts
have actually been created resp. modified.

Therefore, for initialization of the slot and the user PIN, the logical CryptoServer device
(consisting of N physical devices) shall be disintegrated and replaced by N single devices in
the PKCS#11 configuration file.

For the example above we thus have to create a new cluster configuration file:
[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

KeysExternal = true

KeyStore = c:/global/P11.sdb

SlotCount = 3

first CryptoServer LAN device of the failover cluster

[CryptoServer]

Device = 192.168.0.136

ConnectionTimeout = 70000

second CryptoServer LAN device of the failover cluster

[CryptoServer]

Device = 192.168.0.137

ConnectionTimeout = 70000

Operating Modes

 Page 21 of 76

Now we initialize the devices separately by executing C_InitToken on the slot 0x00000000,
0x00000001 and 0x00000002 for the first device (192.168.0.136) and 0x00010000,
0x00010001 and 0x00010002 for the second device (192.168.0.137):

CK_UTF8CHAR_PTR pPinSlot0 = "123456";

CK_UTF8CHAR_PTR pPinSlot1 = "1234567";

CK_UTF8CHAR_PTR pPinSlot2 = "12345678";

CK_ULONG ulPinLenSlot0 = strlen(pPinSlot0);

CK_ULONG ulPinLenSlot1 = strlen(pPinSlot1);

CK_ULONG ulPinLenSlot2 = strlen(pPinSlot2);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

C_InitToken(0x00000000, pPinSlot0, ulPinLenSlot0, pLabel);

C_InitToken(0x00000001, pPinSlot1, ulPinLenSlot1, pLabel);

C_InitToken(0x00000002, pPinSlot2, ulPinLenSlot2, pLabel);

C_InitToken(0x00010000, pPinSlot0, ulPinLenSlot0, pLabel);

C_InitToken(0x00010001, pPinSlot1, ulPinLenSlot1, pLabel);

C_InitToken(0x00010002, pPinSlot2, ulPinLenSlot2, pLabel);

C_InitPIN has to be executed device by device and slot by slot in a similar way:

CK_UTF8CHAR_PTR pPin0 = "654321";

CK_UTF8CHAR_PTR pPin1 = "7654321";

CK_UTF8CHAR_PTR pPin2 = "87654321";

CK_ULONG ulPinLen0 = strlen(pPin0);

CK_ULONG ulPinLen1 = strlen(pPin1);

CK_ULONG ulPinLen2 = strlen(pPin2);

C_InitPIN(hSessionSlot00000000, pPin0, ulPinLen0);

C_InitPIN(hSessionSlot00000001, pPin1, ulPinLen1);

C_InitPIN(hSessionSlot00000002, pPin2, ulPinLen2);

C_InitPIN(hSessionSlot00010000, pPin0, ulPinLen0);

C_InitPIN(hSessionSlot00010001, pPin1, ulPinLen1);

C_InitPIN(hSessionSlot00010002, pPin2, ulPinLen2);

Slots and PINs are initialized now and can be used by replacing the cluster configuration file
by the failover configuration file.

The PINs of SO and USER for a certain slot must be the same on every failover device.
Example: If the PIN of the SO for slot 0 on device PCI:0 is “123456” than the PIN of SO for
slot 0 on device 192.168.0.137 must also be “123456”.

 Internal and External Key Storage

Page 22 of 76

6 Internal and External Key Storage
PKCS#11 keys (objects) can be stored in two locations:

■ Internal: Keys are stored in the CryptoServer hardware security module.

■ External: Keys are stored in an external database.

The default behavior for the generation or creation of PKCS#11 objects can be controlled by
the configuration parameter KeysExternal configuration value.

Development of a PKCS#11 Application

 Page 23 of 76

7 Development of a PKCS#11 Application
The PKCS#11 interface is a pure C-interface. A detailed specification of function prototypes,
cryptographic mechanisms, etc. is described in the PKCS#11 specifications [PKCS11BS] and
[PKCS11ICMS].

For the development of a PKCS#11 application the following header files are needed:

■ cryptoki.h

■ pkcs11.h

■ pkcs11f.h

■ pkcs11t.h

■ pkcs-11v2-20a3.h

■ pkcs11t_cs.h

These files can be downloaded from [PKCS11] except for the last one, which is delivered with
the CryptoServer and contains CryptoServer specific definitions.

To develop a PKCS#11 application with the CryptoServer PKCS#11 library the following
preconditions must be fulfilled:

■ The application shall include the header file cryptoki.h.

■ The configuration file cs_pkcs11_R2.cfg must contain the needed information to access
the CryptoServer (see chapter 4).

■ The SecurityServer firmware package (version 3.00 or higher) must have been loaded.

■ All additional requirements of chapter 3 must be fulfilled.

7.1 Libraries

For development the following libraries exist:

■ For Microsoft Windows operating systems: Dynamic Link Library (DLL)
cs_pkcs11_R2.dll. The library is built with Microsoft Visual Studio components.

■ For Linux, and other UNIX systems: shared library libcs_pkcs11_R2.so and static library
libcs_pkcs11_R2_m.a. Both are built with the GNU Compiler Collections.

The libraries contain everything that is needed to communicate between the PKCS#11
application and CryptoServer.

The libraries for Windows are packed using 1 byte alignment. All other libraries (Linux, etc.)
are compiled with alignment to the processor specific word boundaries.

 Runtime

Page 24 of 76

8 Runtime
This chapter describes details about the Utimaco's PKCS#11 implementation for the
CryptoServer.

8.1 Initialization

When the PKCS#11 function C_Initialize() is called inside an PKCS#11 application the
configuration file cs_pkcs11_R2.cfg will be parsed. In error case C_Initialize()returns
standard PKCS#11 error code. The logging mechanism can be used to determine which error
occurred.

If the Global section is part of the problem, the logfile may not be created. Fix the Global
section first and continue.

The command C_GetSlotList() returns a list of all available slots. If more than one
CryptoServer is configured, the slots are already mapped to the specific schema described in
Chapter 5, “Operating Modes”.

8.2 Limited Data Length

The data length transferred between the CryptoServer PKCS#11 library and the CryptoServer
is limited to a maximum of 250 kByte (256000 byte). This affects all functions that can handle
large data sizes e.g. C_Digest(), C_Crypt(), etc.

The maximum command size includes also a small command header that is prepended to
each data block send to the CryptoServer. The size of the command header varies depending
on the executing function. Therefore, the maximum size of the input data is always a little bit
smaller than this limit (about 25 byte or more).

If the application should handle data blocks that exceeds this limit it should be considered to
split the data into smaller pieces and use always the triple set of functions (C_xxx_init,
C_xxx_update, C_xxx_final) to avoid any problems.

8.2.1 Key Wrapping with AES GCM/CCM

The mechanisms CKM_AES_GCM and CKM_AES_CCM require, among other things, the
mechanism parameter ulAADLen, which provides the length of the additional authentication
data (AAD). In case of C_Wrap and C_Unwrap, it is limited to 64 kByte – 1 (0xFFFF) because
no auto-chunking of AAD is supported for these functions.

Runtime

 Page 25 of 76

8.2.2 Initialization Vector Length for AES GCM

For AES GCM, an initialization vector must be provided as mechanism parameter pIv. The
length of this initialization vector must also be set using the mechanism parameter ulIvLen.
A length of 12 byte is recommended by the NIST.

8.2.3 Data Length for Key Wrapping with AES GCM/CCM

For AES CCM, the explicit input of data length is usually required using the mechanism
parameter ulDataLen. But in case of the functions C_Wrap and C_Unwrap, the correct size of
the data, which is the key size plus overhead, is automatically provided by the CXI module.
Therefore, this mechanism parameter is ignored.

8.3 Multithreading

If the program accesses the CryptoServer PKCS#11 library from a multithreaded application
where several threads are simultaneously calling PKCS#11 functions, then the following
approach should be used.

The main thread should call the C_Initialize() function and create all sessions by
executing the C_OpenSession() function. A single login (C_Login) should be performed for
all open sessions. The session handles must be provided to the threads so that each thread
can perform its operations.

 Runtime

Page 26 of 76

For example, if one session is shared with two threads, the following problem occurs: The first
thread performs C_SignInit() and then performs several C_SignUpdate() steps. If the
second thread performs also a C_SignInit() and C_SignUpdate() at the same time the
result is unspecified. The CryptoServer cannot distinguish between these two threads
because it knows only the session and handles both threads as if they were only one thread.

Authentication Concept

 Page 27 of 76

9 Authentication Concept
In this chapter the authentication concept and user management of the CryptoServer
PKCS#11 R2 library is described.

For standard PKCS#11 usage it is sufficient to use the standard authentication concept as
provided by the CryptoServer PKCS#11 library. This combines the standard PKCS#11 concept
of Security Officer and normal User role with the CryptoServer’s secure user and
authentication concept. See Chapter 9.1 "Standard Authentication Concept" for details.

For non-standard requirements like special authentication mechanisms, authentication
according to the two-person rule or a dedicated key manager role see Chapter 9.2 "Enhanced
Authentication Concept".

9.1 Standard Authentication Concept

PKCS#11 recognizes two types of users: The Security Officer (SO) and the User (USER). These
users are mapped to users on the CryptoServer: For example, the SO of slot number 0 is
mapped to the CryptoServer user ‘SO_0000’. When a PKCS#11 user is logged onto the
CryptoServer PKCS#11 library, also the corresponding CryptoServer user is logged onto the
CryptoServer.

Additionally, Utimaco’s PKCS#11 R2 implementation introduces another user: the
administrator. The administrator corresponds also to a CryptoServer user with a minimum
permission of ‘20000000’. To create an SO using the C_InitToken command, the
administrator must be logged in first. To initialize a slot, create an SO and a USER the
following steps are required:

1. Login a CryptoServer user with a permission of at least 20000000. For instance, login as
the CryptoServer default user ADMIN with the C_Login command.

2. Create the SO executing the C_InitToken command.

3. Logout the CryptoServer administrator with the C_Logout command.

4. Login the SO with the C_Login command.

5. Create the USER executing the C_InitPIN command.

6. Logout the SO with the C_Logout command.

Example authentication:

//1.

CK_UTF8CHAR_PTR pPin = "ADMIN,C:\\tmp\\ADMIN.key";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

 Authentication Concept

Page 28 of 76

// 2.

CK_SLOT_ID slotID = 0;

CK_UTF8CHAR_PTR pPin = "123456";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

//3.

Err = C_Logout(hSession);

//4.

CK_UTF8CHAR_PTR pPin = "123456";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_SO, pPin, ulPinLen);

//5.

CK_UTF8CHAR_PTR pPin = "654321";

CK_ULONG ulPinLen = strlen(pPin);

err = C_InitPIN(hSession, pPin, ulPinLen);

//6.

Err = C_Logout(hSession);

After the execution of the six steps, the command csadm ListUser shows the following
output (example listing for slot 0):
Name Permission Mechanism Attributes

ADMIN 22000000 RSA sign

SO_0000 00000200 HMAC passwd A[CXI_GROUP=SLOT_0000]

USR_0000 00000002 HMAC passwd A[CXI_GROUP=SLOT_0000]

9.2 Enhanced Authentication Concept

9.2.1 Create Users with Other Authentication Mechanisms

The default authentication mechanism used with PCKS#11 users (SO and USER) is HMAC
password. To create users using other authentication mechanisms, information about the
user credentials (password, path to keyfile or smartcard with signature key) has to be
provided with the pPin parameter of the C_InitToken and the C_InitPIN functions in the
following syntax with the prefix CKU_VENDOR:.

Authentication Concept

 Page 29 of 76

Authentication Mechanism Syntax (pPin parameter of C_InitToken or C_InitPIN)

RSA signature with keyfile CKU_VENDOR:RSASign={Hash}<filename>

CKU_VENDOR:RSASign={Hash}<filename>#<password>

■ <filename> - Name of the file containing the RSA key for the
user incl. path to the file

■ <password> - Password of the keyfile, if encrypted

RSA Signature with
smartcard directly connected
to the host

CKU_VENDOR:RSASign={Hash}<key-specifier>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer" in
[CSADMIN] for details about key specifiers.

RSA Signature with
smartcard connected to the
CryptoServer

CKU_VENDOR:RSASC={Hash}<key-specifier>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer" in
[CSADMIN] for details about key specifiers.

HMAC password CKU_VENDOR:HMACPwd={Hash}<password>

<password> - Password of the user

ECDSA signature with keyfile CKU_VENDOR:ECDSA={Hash}<filename>

CKU_VENDOR:ECDSA={Hash}<filename>#<password>

■ <filename> - Name of the file containing the RSA key of the
user incl. path to the file

■ <password> - Password of keyfile, if encrypted

ECDSA signature with
smartcard connected to the
host

CKU_VENDOR:ECDSA={Hash}<key-specifier>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer" in
[CSADMIN] for details about key specifiers.

Table 8: Authentication mechanisms and their syntax

In failover operation mode, the users are created by using the CryptoServer administration
tools csadm or CAT.

Example (SO using RSA signature with smartcard directly connected to the host):

CK_SLOT_ID slotID = 0;

 Authentication Concept

Page 30 of 76

CK_UTF8CHAR_PTR pPin = "CKU_VENDOR:RSASign=:cs2:auto:USB0";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

Example (SO using RSA signature with keyfile):

CK_SLOT_ID slotID = 0;

CK_UTF8CHAR_PTR pPin = "CKU_VENDOR:RSASign=C:\\tmp\\RSA.key#1234";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

Example (SO using HMAC password):

CK_SLOT_ID slotID = 0;

CK_UTF8CHAR_PTR pPin = "CKU_VENDOR:HMACPwd=123456";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

Example (SO using ECDSA signature with smartcard directly connected to the host):

CK_SLOT_ID slotID = 0;

CK_UTF8CHAR_PTR pPin = "CKU_VENDOR:ECDSA=:cs2:auto:USB0";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

Example (SO using ECDSA signature with keyfile):

CK_SLOT_ID slotID = 0;

CK_UTF8CHAR_PTR pPin = "CKU_VENDOR:ECDSA=C:\\tmp\\ECDSA.key#4321";

CK_ULONG ulPinLen = strlen(pPin);

CK_UTF8CHAR_PTR pLabel = "Testlabel";

err = C_InitToken(slotID, pPin, ulPinLen, pLabel);

9.2.2 Login User with Other Authentication Mechanisms

The login of a user using other authentication mechanisms than the default one is similar to
the creation of a user. The userType provided to the C_Login must be CKU_CS_GENERIC. The
pPin parameter of C_Login provides the information about the user credentials (password,
path to the keyfile or smartcard) must be provided in the following syntax:

Authentication Concept

 Page 31 of 76

Authentication Mechanism Syntax (pPin parameter of C_Login)

RSA signature with keyfile <username>,<filename>

<username>,<filename>#<password>

<filename> - Name of the file containing the user's RSA key incl.
path

<password> - Password of keyfile, if encrypted

RSA Signature with smartcard
directly connected to the host

PIN is read in over the PIN pad

<username>,<key-specifier>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer"
in [CSADMIN] for details about key specifiers.

RSA Signature with smartcard
connected to the CryptoServer

PIN is read in over the PIN pad.

<username>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer"
in [CSADMIN] for details about key specifiers.

HMAC password <username>,<password>

<password> - Password of the user

ECDSA signature with keyfile <username>,<filename>
<username>,<filename>#<password>

<filename> - Name of the file containing the user's ECDSA incl.
path to the file

<password> - Password of keyfile, if encrypted

ECDSA signature with
smartcard connected to the
host

PIN is read in over the PIN pad

<username>,<key-specifier>

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer"
in [CSADMIN] for details about key specifiers.

Table 9: Authentication mechanisms and corresponding syntax

Example (login of SO on slot 0) using HMAC password):

CK_UTF8CHAR_PTR pPin = "SO_0000,123456";

 Authentication Concept

Page 32 of 76

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

Example (login of SO on slot 0) using RSA signature with keyfile):

CK_UTF8CHAR_PTR pPin = "SO_0000,C:\\tmp\\RSA.key#1234";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

Example (login of SO on slot 0) using RSA signature with smartcard directly connected
to the host):

CK_UTF8CHAR_PTR pPin = "SO_0000,:cs2:auto:USB0";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

Example (login of USER on slot 0) using ECDSA signature with keyfile):

CK_UTF8CHAR_PTR pPin = "USR_0000,C:\\tmp\\ECDSA.key";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

Example (login of USER on slot 0) using ECDSA signature with smartcard directly
connected to the host):

CK_UTF8CHAR_PTR pPin = "USR_0000,:cs2:auto:USB0";

CK_ULONG ulPinLen = strlen(pPin);

err = C_Login(hSession, CKU_CS_GENERIC, pPin, ulPinLen);

9.2.3 Change PIN for Other Authentication Mechanisms

To change the PIN of a user with authentication mechanism HMAC password (changing the
PIN for other mechanisms is not possible) the pOldPin and pNewPin parameter of the
C_SetPin function must be provided in the following syntax with the prefix CKU_VENDOR:.

Mechanism Syntax (pPin parameter of C_SetPIN)

HMAC password CKU_VENDOR:<password>

<password> - Password of the user

Table 10: Syntax for changing the user password

Authentication Concept

 Page 33 of 76

Example (change PIN of USER using HMAC password):

CK_UTF8CHAR_PTR pOldPin = "CKU_VENDOR:123456";

CK_ULONG ulOldLen = strlen(pOldPin);

CK_UTF8CHAR_PTR pNewPin = "CKU_VENDOR:654321";

CK_ULONG ulNewLen = strlen(pNewPin);

err = C_SetPIN(hSession, pOldPin, ulOldLen , pNewPin, ulNewLen);

Example (RSA keyfile):

CK_UTF8CHAR_PTR pOldPin = "CKU_VENDOR:12345678";

CK_ULONG ulOldLen = strlen(pOldPin);

CK_UTF8CHAR_PTR pNewPin = "CKU_VENDOR:87654321";

CK_ULONG ulNewLen = strlen(pNewPin);

err = C_SetPIN(hSession, pOldPin, ulOldLen , pNewPin, ulNewLen);

9.2.4 Authentication via Configuration File

Sometimes it may be necessary to use an authentication mechanism different from the
default mechanism HMAC password but it is not possible to provide the mechanism
information with the parameters via the CryptoServer PKCS#11 library as described in the
previous sections. In this case, the information for the user whose authentication mechanism
differs from the default one can be written to the configuration file cs_pkcs11_R2.cfg
instead. The configuration item must specify the user name as its <key> parameter and the
authentication mechanism details as <value> of the parameter given in quotation marks.

Authentication Mechanism Syntax in configuration file ("<key> = <value>")

RSA Signature with keyfile <username> = "RSASign={Hash}<filename>"

<filename> - Name of the file containing the user's RSA key
incl. path to the file

RSA Signature with smartcard
connected to the host

<username> = "RSASign={Hash}<key-specifier>"

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote
CryptoServer" in [CSADMIN] for details about key specifiers.

RSA Signature with smartcard
directly connected to the
CryptoServer

<username> = "RSASC ={Hash}<key-specifier>"

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote
CryptoServer" in [CSADMIN] for details about key specifiers.

 Authentication Concept

Page 34 of 76

Authentication Mechanism Syntax in configuration file ("<key> = <value>")

HMAC password <username> = "HMACPwd={Hash}"

ECDSA Signature with keyfile <username> = "ECDSA ={Hash}<filename>"

<filename> - Name of the file containing the user's ECDSA
incl. path to the file

ECDSA Signature with smartcard
connected to the host

<username> = "ECDSA ={Hash}<key-specifier>"

<key-specifier> - Description of smartcard, PIN pad and
interface (example: :cs2:auto:USB0). See the chapters "Key
Specifiers" and "Using a Local PIN Pad for a Remote
CryptoServer" in [CSADMIN] for details about key specifiers.

Table 11: Syntax for defining user's authentication mechanism in cs_pkcs11_R2.cfg

Example configuration file (default SO of slot 0 who uses authentication mechanism
RSA signature with keyfile):

[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

[CryptoServer]

Device = PCI:0

[Slot]

SlotNumber = 0

CryptoServer user ‘SO_0000’

using RSASign mechanism (SO of slot 0)

with the key located at ‘C:\tmp\RSA.key’

SO_0000 = "RSASign=C:\tmp\RSA.key"

Example configuration file (non-default CryptoServer user who uses authentication
mechanism RSA signature with smartcard connected to the host):

[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

[CryptoServer]

Device = PCI:0

[Slot]

SlotNumber = 2

Authentication Concept

 Page 35 of 76

#CryptoServer user ‘CSuser’

using RSASign mechanism with smartcard authentication

(in slot 2)

with the PIN pad connected to an USB interface

CSuser = "RSASign=:cs2:auto:USB0"

See the chapters "Key Specifiers" and "Using a Local PIN Pad for a Remote CryptoServer" in
[CSADMIN] for details about key specifiers.

Quotation marks at the beginning and the end of the authentication mechanism value are
mandatory.

In case that the information about the authentication mechanism of a specific user is given in
the configuration file as described above, the pPin parameter in functions C_InitToken,
C_InitPIN, C_Login and C_SetPin have to be provided as follows:

Mechanism C_InitToken,
C_InitPIN

C_Login C_SetPin

RSA signature with keyfile NULL_PTR or
password of
keyfile

NULL_PTR or
password of
keyfile

NOT ALLOWED

RSA Signature with smartcard
connected to the host

NULL_PTR NULL_PTR NOT ALLOWED

RSA Signature with smartcard
connected to the CryptoServer

NULL_PTR NULL_PTR NOT ALLOWED

HMAC password password password password

ECDSA signature with keyfile NULL_PTR or
password of
keyfile

NULL_PTR or
password of
keyfile

NOT ALLOWED

ECDSA signature with
smartcard connected to the
CryptoServer

NULL_PTR NULL_PTR NOT ALLOWED

Table 12: Definition of pPin parameter if user's auth. mechanism is specified in cs_pkcs11_R2.cfg

 Authentication Concept

Page 36 of 76

9.2.5 Automatic Login of Administrator via Configuration File

Sometimes, it might not be possible to logon as an administrator (function C_Login for user
with administrator rights) before the execution of the slot initialization (function
C_InitToken). Therefore, a special user with administrator rights who is logged in
automatically before the initialization can be configured via configuration file. The user's name
is “AD”, and he uses the authentication mechanism HMAC with minimum permission
‘20000000’. First, the user must be created using the administration tools csadm or CAT.

After creating the special user, the output of the command csadm ListUser should for
example look as follows:
Name Permission Mechanism Attributes

ADMIN 22000000 RSA sign

AD 20000000 HMAC passwd

For the automatic login of the user AD to a slot, the user credentials must be written into the
configuration file according to the following syntax:
AD = "HMACPwd=[{Hash}]#<password>"

Example configuration file (administrator user AD is automatically logged in when
executing first C_InitToken on slot 0):

[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

[CryptoServer]

Device = PCI:0

[Slot]

SlotNumber = 0

the administrator user ‘AD’ is logged in during C_InitToken

process with the HMAC authentication mechanism

and password ‘123456’

AD = "HMACPwd=#123456"

9.2.6 Authentication According to the Two-Person Rule

The CryptoServer PKCS#11 interface provides the possibility to realize an authentication
concept according to the two-person rule.

If authentication according to the two-person rule is required (e.g. due to a security policy),
specific users obeying to the rule have to be created manually with the CryptoServer
administration tools, CAT or csadm.

Authentication Concept

 Page 37 of 76

For every user role (SO, USER or key manager KM (if optionally configured)) that must follow
the two-person rule for authentication, minimum two users with permission 1 in the
respective user group have to be created.

Examples for user creation according to the two-person rule (slot 0):

■ In order to implement the two-person rule for the SO in slot 0, create minimum two users
SO1_0000 and SO2_0000, with user permission 00000100 and attribute
CXI_GROUP=SLOT_0000.

■ In order to implement the two-person rule for the USER in slot 0, create minimum two
users USR1_0000 and USR2_0000, with user permission 00000001 and attribute
CXI_GROUP=SLOT_0000.

■ In order to implement the two-person rule for the KM in slot 0, create minimum two users
KM1_0000 and KM2_0000, with user permission 00000010 and attribute
CXI_GROUP=SLOT_0000.

To login two users for a PKCS#11 command execution according to the two-person rule the
C_Login function with user type CKU_CS_GENERIC has to be used twice (once for each user).

Example login (two SOs with authentication mechanism HMAC for slot 0):

CK_UTF8CHAR_PTR pPinSO1 = "SO1_0000,123456";

CK_ULONG ulPinLenSO1 = strlen(pPinSO1);

CK_UTF8CHAR_PTR pPinSO2 = "SO2_0000,654321";

CK_ULONG ulPinLenSO2 = strlen(pPinSO2);

err = C_Login(hSession, CKU_CS_GENERIC, pPinSO1, ulPinLenSO1);

err = C_Login(hSession, CKU_CS_GENERIC, pPinSO2, ulPinLenSO2);

9.2.7 Extended Login

The extended login mechanism enables the execution of multiple login during a C_Login
function call. It is often useful in situations where the CryptoServer PKCS#11 library is
integrated into another software but a requirement demands a login using the two-person rule
with authentication via a PIN pad.

First, two users for the two-person rule must be created like explained in chapter 9.2.6. To
activate extended login for a slot, an entry shall be set in the corresponding slot section of the
configuration file cs_pkcs11_R2.cfg:

■ The configuration entry ExtendedLoginSO enables the extended login for the SO.

■ The configuration entry ExtendedLoginUSER enables the extended login for the USER.

The value of the configuration entry is a list of login data which are formatted in the same way
like the pPin parameter in chapter 9.2.2.

 Authentication Concept

Page 38 of 76

Example configuration file (two-person configuration of SO with authentication via a
PIN pad on slot 0):

[Global]

Logging = 3

Logpath = c:/tmp

Logsize = 10mb

[CryptoServer]

Device = PCI:0

[Slot]

SlotNumber = 0

after C_Login was called, the user SO1_0000 must authenticate via the

PIN pad connected to an USB interface; then the user SO2_0000 must

authenticate via the same PIN pad

ExtendedLoginSO = {

SO1_0000,:cs2:auto:USB0

SO2_0000,:cs2:auto:USB0

}

9.2.8 Key Manager and Key User Role

In PKCS#11 the USER has, by default, the permissions/tasks to manage keys (create, delete,
import, export, etc.) and to use them in cryptographic operations. These tasks can also be
split into two groups and assigned to different PKCS#11 users. This requires the CryptoServer
PKCS#11 library to be configured accordingly so it can handle the two resulting user roles:

■ Key manager (KM) with permission to manage cryptographic keys

■ Key user (KU) with the permission to use cryptographic keys.

9.2.9 Create and Login the Key Manager

The KM must be created out of the scope of the CryptoServer PKCS#11 library with the
CryptoServer's administration tools csadm or CAT. After creation the configuration value
CKA_CFG_AUTH_KEYM_MASK must be set to the necessary permission. For step-by-step
instructions on how to create a new user with the key manager role with CAT and P11CAT,
please read Chapter "Creating a New User" in [CSMSADM], and Chapter "Changing the Global
Configuration" in [CS_PKCS11CAT]. An example for creating a user in the key manager role
with csadm is provided in Chapter "AddUser" of the [CSADMIN].

Authentication Concept

 Page 39 of 76

Example (KM for slot 1):

Create a user KM_0001 with permission mask of 0000020 and attribute
CXI_GROUP=SLOT_0001. This command requires authentication by a user with the user
administrator role (min. permissions 20000000) or by the default CryptoServer user ADMIN.

1. Login as a user with the user administrator role, or as the ADMIN, or alternatively as the
SO for the corresponding slot SO_0001 by using the C_Login function.
IMPORTANT: The last one requires the slot configuration object CKA_CFG_ALLOW_SLOTS
be previously set to CK_TRUE.

2. Change the attribute CKA_CFG_AUTH_KEYM_MASK with function C_SetAttributeValue to
the value 0x00000020.

3. Login as the user KM_0001 with the C_Login function and user type CKU_CS_GENERIC.
The KM is logged in now and can perform key management functions.

 Key Management Functions in PKCS#11

Page 40 of 76

10 Key Management Functions in PKCS#11
The following lists show an overview of functions which can be executed by the KM or KU. If a
KM tries to execute functions from the KU (and vice versa) the error
CKR_USER_NOT_LOGGED_IN occurs. For a detailed description of the functions listed below
please see [PKCS11BS].

PKCS#11 Function Description Permitted
user

KM KU

C_CreateObject Creates a new object

C_CopyObject Creates a copy of an object

C_DestroyObject Destroys an object

C_SetAttributeValue Modifies an attribute value of an object

C_GenerateKey Generates a secret key

C_GenerateKeyPair Generates a public-key/private-key pair

C_WrapKey Wraps (encrypts) a key

C_UnwrapKey Unwraps (decrypts) a key

C_DeriveKey Derives a key from a base key

C_EncryptInit Initializes an encryption operation

C_Encrypt Encrypts single-part data

C_EncryptUpdate Continues a multiple-part encryption
operation

C_EncryptFinal Finishes a multiple-part encryption operation

C_DecryptInit Initializes a decryption operation

C_Decrypt Decrypts single-part encrypted data

C_DecryptUpdate Continues a multiple-part decryption
operation

C_DecryptFinal Finishes a multiple-part decryption operation

Key Management Functions in PKCS#11

 Page 41 of 76

PKCS#11 Function Description Permitted
user

KM KU

C_DigestInit Initializes a message-digesting operation

C_Digest Digests single-part data

C_DigestUpdate Continues a multiple-part digesting operation

C_DigestKey Digests a key

C_DigestFinal Finishes a multiple-part digesting operation

C_SignInit Initializes a signature operation

C_Sign Signs single-part data

C_SignUpdate Continues a multiple-part signature operation

C_SignFinal Finishes a multiple-part signature operation

C_SignRecoverInit Initializes a signature operation, where the
data can be recovered from the signature

C_SignRecover Signs single-part data, where the data can be
recovered from the signature

C_VerifyInit Initializes a verification operation

C_Verify Verifies a signature on single-part data

C_VerifyUpdate Continues a multiple-part verification
operation

C_VerifyFinal Finishes a multiple-part verification operation

C_VerifyRecoverInit Initializes a verification operation where the
data is recovered from the signature

C_VerifyRecover Verifies a signature on single-part data where
the data is recovered from the signature

C_DigestEncryptUpdate Continues simultaneous multiple-part
digesting and encryption operations

C_DecryptDigestUpdate Continues simultaneous multiple-part
decryption and digesting operations

 Key Management Functions in PKCS#11

Page 42 of 76

PKCS#11 Function Description Permitted
user

KM KU

C_SignEncryptUpdate Continues simultaneous multiple-part
signature and encryption operations

C_DecryptVerifyUpdate Continues simultaneous multiple-part
decryption and verification operations

Table 13: List of PKCS#11 standard functions for KM and KU

Vendor Defined PKCS#11 Extensions

 Page 43 of 76

11 Vendor Defined PKCS#11 Extensions
Definitions for all vendor defined extensions are provided with the include pkcs11t_cs.h file.

11.1 CryptoServer Defined Mechanisms

The CryptoServer implements the following mechanisms which are not included in the
PKCS#11 standard (see [PKCS11ICMS]).

Name Description

CKM_ECDSA_SHA3_224 ECDSA signature generation using SHA3-224 hash algorithm.

CKM_ECDSA_SHA3_256 ECDSA signature generation using SHA3-256 hash algorithm.

CKM_ECDSA_SHA3_384 ECDSA signature generation using SHA3-384 hash algorithm.

CKM_ECDSA_SHA3_512 ECDSA signature generation using SHA3-512 hash algorithm.

CKM_ECDSA_RIPEMD160 ECDSA signature generation using RIPEMD-160 hash algorithm.

CKM_DSA_RIPEMD160 DSA signature generation using RIPEMD-160 hash algorithm.

CKM_DES3_RETAIL_MAC Triple DES Retail-MAC with 0-Padding (see chapter 11.3).

CKM_RSA_PKCS_MULTI Generate multiple signatures with CKM_RSA_PKCS mechanism (see
chapter 11.4).

CKM_RSA_X_509_MULTI Generate multiple signatures with CKM_RSA_X_509 mechanism (see
chapter 11.4).

CKM_ECDSA_MULTI Generate up to 16 signatures with CKM_ECDSA mechanism (see
chapter 11.4).

CKM_DES_CBC_WRAP Enhanced DES key wrapping mechanism (see definition for structure
CK_WRAP_PARAMS).

CKM_AES_CBC_WRAP Enhanced AES key wrapping mechanism (see definition for structure
CK_WRAP_PARAMS).

CKM_ECKA EC secret agreement according to BSI-TR-03111 (returns secret point
without hashing).

CKM_ECDSA_ECIES ECDSA crypt algorithm (see chapter 11.2).

Table 14: Description of CryptoServer specific mechanisms

 Vendor Defined PKCS#11 Extensions

Page 44 of 76

11.2 Encryption with the “Elliptic Curve Integrated Encryption
Scheme” (ECIES)

The mechanism CKM_ECDSA_ECIES can be used in single C_Encrypt() or C_Decrypt()
function calls to cipher data according to the “Elliptic Curve (Augmented) Encryption Scheme”
of [ANSI-X9.63] or “Elliptic Curve Integration Encryption Scheme (ECIES)” of [SEC1].

Example for mechanism CKM_ECDSA_ECIES:

CK_SESSION_HANDLE sid;

CK_OBJECT_HANDLE hPublicKey; // CKK_ECDSA

CK_OBJECT_HANDLE hPrivateKey; // CKK_ECDSA

CK_BYTE plain[BUFFERSIZE];

CK_ULONG l_plain = sizeof(plain);

CK_BYTE encrypt[BUFFERSIZE];

CK_BYTE decrypt[BUFFERSIZE];

CK_ULONG l_encrypt = sizeof(encrypt);

CK_ULONG l_decrypt = sizeof(decrypt);

CK_ECDSA_ECIES_PARAMS ecies_para;

CK_MECHANISM mechanism = {

 CKM_ECDSA_ECIES, &ecies_para, sizeof(ecies_para)

};

...

ecies_para.hashAlg = CKM_SHA_1;

ecies_para.cryptAlg = CKM_AES_CBC;

ecies_para.cryptOpt = 16;

ecies_para.macAlg = CKM_SHA_1_HMAC;

ecies_para.macOpt = 0;

ecies_para.pSharedSecret1 = "top";

ecies_para.ulSharetSecret1 = 3;

ecies_para.pSharedSecret2 = "secret";

ecies_para.ulSharetSecret2 = 6;

err = C_EncryptInit(sid, &mechanism, hPublicKey);

err = C_Encrypt(sid, plain, l_plain, encrypt, &l_encrypt);

err = C_DecryptInit(sid, &mechanism, hPrivateKey);

err = C_Decrypt(sid, encrypt, l_encrypt, decrypt, &l_decrypt);

The following parameters can be used:

hashAlg: CKM_SHA_1, CKM_SHA224, CKM_SHA256, CKM_SHA384,

 CKM_SHA512, CKM_RIPEMD160, CKM_MD5

cryptAlg: CKM_AES_ECB, CKM_AES_ECB, CKM_AES_ECB, CKM_AES_CBC,

Vendor Defined PKCS#11 Extensions

 Page 45 of 76

 CKM_AES_CBC, CKM_AES_CBC, CKM_ECDSA_ECIES_XOR

cryptOpt: Key Length of cryptAlg. (0 for CKM_ECDSA_ECIES_XOR)

macAlg: CKM_SHA_1_HMAC, CKM_SHA224_HMAC, CKM_SHA256_HMAC,

 CKM_SHA384_HMAC, CKM_SHA512_HMAC, CKM_MD5_HMAC,

 CKM_RIPEMD160_HMAC

macOpt: currently ignored

11.3 Sign and Verify Using the DES Retail-MAC

The mechanism CKM_DES3_RETAIL_MAC can be used in C_Sign() and C_Verify() to
calculate a CBC Retail-MAC according to [ISO-9797] and [ANSI-X9.19].

Example for mechanism CKM_DES3_RETAIL_MAC:

CK_SESSION_HANDLE sid;

CK_OBJECT_HANDLE hSecretKey; //CKK_DES3 handle

CK_MECHANISM signMechanism;

CK_BYTE data[BUFFERSIZE];

CK_ULONG l_data = sizeof(data);

CK_BYTE signature[BUFFERSIZE];

CK_ULONG l_signature = sizeof(signature);

signMechanism.mechanism = CKM_DES3_RETAIL_MAC;

signMechanism.pParameter = NULL;

signMechanism.ulParameterLen = 0;

...

err = C_SignInit(sid, &signMechanism, hSecretKey);

err = C_Sign(sid, data, l_data, signature, &l_signatur);

■ If the pParameter of the mechanism structure is set to NULL (or 8), the result has the
length of 8 bytes according to the [ISO-9797] specification.

■ If the pParameter is set to 4, the result has the length of 4 bytes according to the [ANSI-
X9.19] specification.

11.4 Multiple Signature Mechanisms

To achieve the maximum performance for signature generation, multiple signatures using the
same key can be generated with the vendor defined mechanisms CKM_RSA_PKCS_MULTI,
CKM_RSA_X_509_MULTI and CKM_ECDSA_MULTI. These mechanisms behave like
CKM_RSA_PKCS, CKM_RSA_X_509 and CKM_ECDSA respectively, except that an array of data is

 Vendor Defined PKCS#11 Extensions

Page 46 of 76

given as input to the C_Sign() function and that the returned data is an array of signatures.
Only single part operations are allowed with these mechanisms.

Input Data Format

The input data given to the C_Sign() function has the following format:

k data_1 data_2 … data_k

2 byte n byte n byte … n byte

Output Data Format

On success the function returns an array of signatures of equal length:

signature_1 signature_2 … signature_k

m byte m byte … m byte

The following table explains the meaning of the particular fields in the input and output data
structures.

Field Description

k Number of signatures to be calculated (k ≤ 50). Must be in big-endian format.

data_1 First input data to be signed. All data parts must have the same length.

data_k Last input data to be signed. All data parts must have the same length.

signature_1 First signature generated by the function calculated over data_1. All signatures
have the same length.

signature_k Last signature generated by the function, calculated over data_k. All signatures
have the same length.

Table 15: Fields of the input and output data structures

11.5 Configuration Objects

The behavior of the CryptoServer PKCS#11 library can be configured by special objects, called
configuration objects. They can be neither created nor deleted and are referenced by unique
object handles. The only valid operations are functions to read or to change an attribute value
of a configuration object:
C_GetAttributeValue

C_SetAttributeValue

Vendor Defined PKCS#11 Extensions

 Page 47 of 76

11.5.1 Local Configuration Object

Local configuration objects are used to configure the instance of the CryptoServer PKCS#11
library. They are operative in the currently started instance of the CryptoServer PKCS#11
library, and are referenced by the handle P11_CFG_LOCAL_HDL.

Attribute Description

CKA_UTIMACO_CFG_PATH Type: CK_BYTE_PTR

Value: Path to the configuration file

Default:

■ For the SecurityServer product CD:

▣ As of version 4.20:
C:\ProgramData\cs_pkcs11_R2.cfg

▣ Earlier than version 4.20:
C:\Program

Files\Utimaco\CryptoServer\Lib\cs_pkcs11_R2.cf

g

■ For the CryptoServer SDK product CD:
C:\Utimaco\CryptoServer\Lib\cs_pkcs11_R2.cfg

read only

Table 16: Attribute CKA_UTIMACO_CFG_PATH - details

11.5.2 Global CryptoServer Configuration Object

Global CryptoServer configuration objects are used to configure settings that affect the whole
CryptoServer. They are operative for all instances of the CryptoServer PKCS#11 library that
are using the CryptoServer where the object is configured. They are referenced by the handle
P11_CFG_GLOBAL_HDL.

The attributes can be read by the users ADMIN (or CryptoServer administrators with min.
permission 2 in the user group 7, 20000000), SO, USER, key manager and key user.

Write access to global configuration objects is only granted to the default CryptoServer
Administrator ADMIN or users with CryptoServer User Administrator role (min. permission 2 in
the user group 7, 20000000).

Changes on the attributes of a global configuration object are stored in the database
CXIKEY.db, which is deleted on alarm occurrence and when the Clear command (see
Chapter "The Clear Functionality" in [CSADMIN]) is performed. We highly recommend to create
a backup of the Global CryptoServer Configuration Object resp. of the CXIKEY.db with the
csadm command BackupDatabase described in Chapter "BackupDatabase" of the [CSADMIN]

 Vendor Defined PKCS#11 Extensions

Page 48 of 76

or with the CAT as described in Chapter "Creating a Database Backup" of the [CSMSADM], so
you can easily restore your global PKCS#11 configuration.
The following attributes for global configuration are available on the CryptoServer:

■ CKA_CFG_ALLOW_SLOTS

This attribute enables the Security Officer (SO) to configure slots.

Possible values:

▣ CK_TRUE - the SO is permitted to configure slots.

▣ CK_FALSE (default) - the SO is not permitted to configure slots.

■ CKA_CFG_CHECK_VALIDITY_PERIOD

This attribute checks the validity period of the key.

The validity period of a key is only checked, if the following functions are to be performed
using the key: C_SignInit (), C_EncryptInit (), C_DecryptInit (),
C_DeriveInit (), C_WrapKey (), C_UnwrapKey ()

Possible values:

▣ CK_TRUE - the validity period of a key is checked, if the key has the attributes
CKA_START_DATE and CKA_END_DATE.

▣ CK_FALSE (default) - the validity period of a key is not checked.

■ CKA_CFG_AUTH_PLAIN_MASK

This attribute defines the permissions required to import and export a key in plaintext.

Default value: 0x00000002 - corresponds to the permissions of the Cryptographic User,
who is already set up in the CryptoServer.

IMPORTANT:
If you change the default setting, you must also use the CAT or csadm administration
tools to set up the corresponding user in your CryptoServer. This user must be assigned
the permissions specified here. For step-by-step instructions on how to create a new user
with CAT, please read Chapter "Creating a New User" in [CSMSADM]. Examples for creating
different users with csadm are provided in Chapter "AddUser" of the [CSADMIN].

■ CKA_CFG_WRAP_POLICY

This attribute applies a key wrapping policy specifying how keys are encrypted so they can
be securely exported outside the CryptoServer.

Possible values:

▣ CK_TRUE - a strong key (for example, 256-bit AES) cannot be encrypted with a weak key
(for example, 1024-bit RSA).

▣ CK_FALSE (default) - a strong key can be encrypted with a weak key.

Vendor Defined PKCS#11 Extensions

 Page 49 of 76

■ CKA_CFG_AUTH_KEYM_MASK

This attribute defines the authentication status of the key manager who, by default, has
the same permissions as the User (00000002).

Default value: 0x00000002 - corresponds to the permission of the Cryptographic User,
who is already set up in the CryptoServer.

You can change this permission for the key manager here to 00000020, and split the User
role into two roles: key user and key manager.

IMPORTANT:
If you change the default value, you must use the user management functions in CAT or
csadm administration tools to set up a key manager in CryptoServer, who is assigned the
permission 2 in the user group 1 corresponding to the authentication status 00000020
specified here. For step-by-step instructions on how to create a new user with the key
manager role with CAT and P11CAT, please read Chapter "Creating a New User" in
[CSMSADM], and Chapter "Changing the Global Configuration" in [CS_PKCS11CAT]. An
example for creating a user with the key manager role with csadm is provided in Chapter
"AddUser" of the [CSADMIN].

■ CKA_CFG_SECURE_DERIVATION

This security relevant attribute is only available as from SecurityServer 4.01 (CXI firmware
module version 2.1.11.1).

This attribute prohibits the usage of the following key derivation mechanisms, and
prevents Reduced Key Space attacks:

▣ CKM_XOR_BASE_AND_DATA

▣ CKM_CONCATENATE_DATA_AND_BASE

▣ CKM_CONCATENATE_BASE_AND_DATA

▣ CKM_CONCATENATE_BASE_AND_KEY

▣ CKM_EXTRACT_KEY_FROM_KEY

For a detailed description of the mechanisms see [PKCS11ICMS].

Possible values:

▣ CK_TRUE – none of the key derivation mechanisms listed above can be used by the
function C_Derive ().

 Vendor Defined PKCS#11 Extensions

Page 50 of 76

▣ CK_FALSE (default) – the key derivation mechanisms listed above can be used by the
function C_Derive () for key derivation.

■ CKA_CFG_SECURE_IMPORT

This security relevant attribute is only available as from SecurityServer 4.01 (CXI firmware
module version 2.1.11.1).

This attribute prevents simple Key Extraction attacks by performing additional strict
checks on wrapping keys.

Possible values:

▣ CK_FALSE (default) – no additional strict checks on wrapping keys are performed.

▣ CK_TRUE – the key wrapping and unwrapping functions perform the following
additional strict checks on wrapping keys.

□ C_CreateObject checks that for public keys the attribute CKA_WRAP is set to
CK_FALSE. If this check fails, the error code B0680204 is written to the
cs_pkcs11_R2.log logfile. This prevents wrapping with potentially untrustworthy
keys, since we have no control over the corresponding private key.

□ C_WrapKey and C_EncryptInit prohibit the use of the CKM_RSA_PKCS mechanism.
If CKM_RSA_PKCS is provided as key wrapping mechanism, the error code B068002D
is written to the cs_pkcs11_R2.log logfile. This mitigates the Bleichenbacher
Padding Oracle attack on wrapped keys.

□ C_WrapKey:

Prohibits the use of public keys as wrapping keys. If the wrapping key is a public
one, the error code B0680205 is written to the cs_pkcs11_R2.log logfile. This
prevents wrapping with potentially untrustworthy keys, since we have no control
over the corresponding private key.

Checks that for wrapping keys the attribute CKA_DECRYPT is set to CK_FALSE.
B0680200 is written to the cs_pkcs11_R2.log logfile. This prevents simple Key
Extraction attacks.

Checks that for wrapping keys the attribute CKA_ALWAYS_SENSITIVE is set to
CK_TRUE. If this check fails, the error code B0680202 is written to the
cs_pkcs11_R2.log logfile. This prevents wrapping with potentially untrustworthy
keys.

□ C_UnwrapKey:

Vendor Defined PKCS#11 Extensions

 Page 51 of 76

Checks that for unwrapping keys the CKA_ENCRYPT attribute is set to CK_FALSE. If
this check fails, the error code B0680201 is written to the cs_pkcs11_R2.log
logfile. This prevents simple Key Extraction attacks.

Checks that templates used for unwrapping keys contain the attribute
CKA_CHECK_VALUE (obtains its value through C_GetAttributeValue when
exporting keys). The check value of the unwrapped components is then compared
to the provided value. If this check fails, the error code B0680206 is written to the
cs_pkcs11_R2.log logfile. This checks the integrity of reimported keys to prevent
Key Binding attacks and Unwrap Fault attacks.

Checks that for unwrapped keys the CKA_WRAP attribute is set to CK_FALSE. If this
check fails, the error code B0680204 is returned is written to the
cs_pkcs11_R2.log logfile. This prevents wrapping with potentially untrustworthy
keys.

Checks that for unwrapped keys the attribute CKA_SENSITIVE is set to CK_TRUE. If
this check fails, the error code B0680203 is returned is written to the
cs_pkcs11_R2.log logfile. This prevents simple Key Extraction attacks.

See chapter 4.2, "Logging" for details about how to configure the PKCS#11 API logfile
(cs_pkcs11_R2.log).

■ CKA_CFG_SECURE_RSA_COMPONENTS

This security relevant attribute is only available as from SecurityServer/CryptoServer SDK
4.01 (CXI firmware module version 2.1.11.1).

This attribute applies restrictions on the length of the public exponent used for the
generation of RSA keys.

Possible values:

▣ CK_TRUE (default) – new RSA keys cannot be created with very low, smaller than
0x10001, public exponents.

▣ CK_FALSE – new RSA keys can be created with very low public exponents.

 Vendor Defined PKCS#11 Extensions

Page 52 of 76

■ CKA_CFG_P11R2_BACKWARDS_COMPATIBLE

This security relevant attribute is only available as from SecurityServer/CryptoServer SDK
4.01 (CXI firmware module version 2.1.11.1).

This attribute determines whether keys can be used by default as base keys for key
derivation or not.

Possible values:

▣ CK_TRUE – keys generated by using an ECC scheme or Diffie-Hellman algorithm can
be used as base keys for key derivation (PKCS#11 standard non-compliant legacy);
may be necessary for some integrations.

▣ CK_FALSE (default) –newly generated or imported keys cannot be used by default as
base keys for key derivation.

■ CKA_CFG_ENFORCE_BLINDING

This security relevant attribute is only available as from SecurityServer/CryptoServer SDK
4.10 (CXI firmware module version 2.2.1.0).

This attribute prevents side-channel analysis (SCA) attacks by enabling/disabling
CryptoServer-specific software measures for SCA resistance. These software measures
imply changing the internal computations of RSA and ECC keys in a way that simple and
differential power analysis, as well as electromagnetic and timing analysis measurements
on cryptographic keys do not reveal information any longer.

However, the measures for SCA resistance negatively affect the performance of the
cryptographic operations on RSA and ECDSA keys. Therefore, they are disabled by default,
and can be enabled, if necessary.

Possible values:

▣ CK_TRUE – software measures for SCA resistance are used for

cryptographic operations on RSA and ECDSA keys.

▣ CK_FALSE (default) – normal (without software measures for SCA

resistance) cryptographic operations on RSA and ECDSA keys are used.

Vendor Defined PKCS#11 Extensions

 Page 53 of 76

■ CKA_CFG_SECURE_SLOT_BACKUP

This security relevant attribute is only available as from SecurityServer/CryptoServer SDK
4.10 (CXI firmware module version 2.2.1.0).

This attribute enforces the usage of an individual backup key (Tenant Backup Key, TBK)
per slot instead of the MBK to protect external keys and key backups. By default, only
MBK-protected external key storage and key backup is enabled.

Possible values:

▣ CK_TRUE – use slot-individual backup keys (TBKs) derived from the CryptoServer's
MBK to encrypt external keys and key backups.

▣ CK_FALSE (default) – use the CryptoServer's MBK to encrypt external keys and key
backups

Make sure you have set this configuration attribute according to your security policy before
your CryptoServer production environment gets operational.

If you use SecurityServer/CryptoServer SDK 4.10, then create an external key or key backup
by using an MBK, then enable the usage of slot-individual backup keys by setting the
CKA_CFG_SECURE_SLOT_BACKUP configuration attribute to the CK_TRUE value, trying
to restore the external key or key backup fails and the external key and key backups become
inaccessible. The error message “invalid mac of key blob” (error code: 0xB0680026) is
created.
This applies as well if you have upgraded to SecurityServer/CryptoServer SDK 4.20 or later
before trying to restore the external key or key backups.
However, if you upgrade to SecurityServer/CryptoServer SDK 4.20 before creating the
external key or key backup using an MBK, restoring them with a slot-individual backup key
succeeds.

To further individualize your slot-individual backup key, you can optionally define a slot
specific passphrase to be used for the derivation of that backup key. This is done by setting
the CKA_CFG_SLOT_BACKUP_PASS_HASH slot configuration attribute prior to enabling the
usage of slot-individual backup keys with the CKA_CFG_SECURE_SLOT_BACKUP global
configuration attribute set to CK_TRUE. See Chapter 11.5.3, “CryptoServer Slot Configuration

 Vendor Defined PKCS#11 Extensions

Page 54 of 76

Objects”, for a detailed description of the CKA_CFG_SLOT_BACKUP_PASS_HASH slot
configuration attribute.

11.5.3 CryptoServer Slot Configuration Objects

The CryptoServer's slot configuration objects are used to configure the current slot. They are
operative for all instances of the CryptoServer PKCS#11 library that are using the specific
PKCS#11 slot. The handle they are referenced by is P11_CFG_SLOT_HDL.

These objects can only be changed by the SO of the slot after the global attribute
CKA_CFG_ALLOW_SLOTS has been set to CK_TRUE by the default user ADMIN or a user(s) with
permissions in the user group 7 (min. required authentication status is 20000000). The SO
can configure all attributes previously described in chapter 11.5.2, except for the
CKA_CFG_ALLOW_SLOTS attribute.

The CryptoServer slot configuration objects can be read by the SO, USER, key manager and
key user (if configured as mentioned in chapter 9.2.9).

Changes on the attributes of a slot configuration object are stored in the database CXIKEY.db,
which is deleted on alarm occurrence and when the Clear command (see Chapter "The Clear
Functionality" in [CSADMIN]) is performed. We highly recommend to create a backup of the
Slot CryptoServer Configuration Object with the P11CAT tool (see Chapter "Creating a Slot
Configuration Backup" in the [CS_PKCS11CAT]) or the p11tool2 BackupConfig command
(see [CS_PKCS11T2]) so you can easily restore your PKCS#11 slot configuration.

In addition to the attributes described in chapter 11.5.2, the
CKA_CFG_SLOT_BACKUP_PASS_HASH slot-individual attribute can be configured in a slot
configuration object. This attribute stores the SHA-256 hash value of a passphrase which is
only used for the derivation of a slot-individual backup key (see
CKA_CFG_SECURE_SLOT_BACKUP in chapter 11.5.2).

Vendor Defined PKCS#11 Extensions

 Page 55 of 76

If you want to use an individual passphrase for the derivation of the slot-individual backup
key, make sure you have set the CKA_CFG_SLOT_BACKUP_PASS_HASH configuration
attribute prior to the activation of the CKA_CFG_SECURE_SLOT_BACKUP attribute and
before your CryptoServer production environment gets operational.
Changing the CKA_CFG_SLOT_BACKUP_PASS_HASH configuration attribute for a slot
that is currently in use causes previously generated external keys and their backups to
become inaccessible.
If you use SecurityServer/CryptoServer SDK 4.10 when creating the external key and their
backups and you try to restore them with a changed individual passphrase, the error
message “invalid mac of key blob” (error code: 0xB0680026) is created.
This applies as well if you have upgraded to SecurityServer/CryptoServer SDK 4.20 or later
before trying to restore the external key or key backups.
However, if you upgrade to SecurityServer/CryptoServer SDK 4.20 before creating the
external key or key backup and you try to restore them with a changed individual
passphrase, the error message “wrong TBK passphrase for this key blob” (error code:
0xB0680081) is created.

The CKA_CFG_SLOT_BACKUP_PASS_HASH attribute can be set by the SO to any string even if
the CKA_CFG_ALLOW_SLOTS attribute is set to CK_FALSE. The default value is the SHA-256
hash of the empty string.

 Supported Mechanisms and Function Mapping

Page 56 of 76

12 Supported Mechanisms and Function Mapping
This chapter contains an overview about the mechanisms currently supported by the
CryptoServer PKCS#11 library.

12.1 PKCS#11 Defined Mechanisms

The following table shows the PKCS#11 standard mechanisms provided by the CryptoServer
and the PKCS#11 API functions supporting them.

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_RSA_PKCS_OAEP
2

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_X9_31_KEY_PAIR_GEN

CKM_RSA_PKCS
2

2

CKM_RSA_PKCS_PSS
2

CKM_RSA_X_509
2

2

CKM_RSA_X9_31
2

CKM_MD5_RSA_PKCS

CKM_SHA1_RSA_PKCS

CKM_SHA224_RSA_PKCS

CKM_SHA256_RSA_PKCS

CKM_SHA384_RSA_PKCS

CKM_SHA512_RSA_PKCS

CKM_SHA3_224_RSA_PKCS

CKM_SHA3_256_RSA_PKCS

CKM_SHA3_384_RSA_PKCS

CKM_SHA3_512_RSA_PKCS

CKM_RIPEMD160_RSA_PKCS

CKM_SHA1_RSA_PKCS_PSS

CKM_SHA224_RSA_PKCS_PSS

Supported Mechanisms and Function Mapping

 Page 57 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_SHA256_RSA_PKCS_PSS

CKM_SHA384_RSA_PKCS_PSS

CKM_SHA512_RSA_PKCS_PSS

CKM_SHA3_224_RSA_PKCS_PSS

CKM_SHA3_256_RSA_PKCS_PSS

CKM_SHA3_384_RSA_PKCS_PSS

CKM_SHA3_512_RSA_PKCS_PSS

CKM_SHA1_RSA_X9_31

CKM_DSA
2

CKM_DSA_SHA1

CKM_DSA_SHA224

CKM_DSA_SHA256

CKM_DSA_SHA384

CKM_DSA_SHA512

CKM_DSA_SHA3_224

CKM_DSA_SHA3_256

CKM_DSA_SHA3_384

CKM_DSA_SHA3_512

CKM_DSA_KEY_PAIR_GEN

CKM_DSA_PARAMETER_GEN

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_X9_42_DH_KEY_PAIR_GEN

CKM_X9_42_DH_PKCS_PARAMETER_GEN

CKM_X9_42_DH_DERIVE

CKM_EC_KEY_PAIR_GEN
(CKM_ECDSA_KEY_PAIR_GEN)

CKM_ECDSA
2

CKM_ECDSA_SHA1

 Supported Mechanisms and Function Mapping

Page 58 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_ECDSA_SHA224

CKM_ECDSA_SHA256

CKM_ECDSA_SHA384

CKM_ECDSA_SHA512

CKM_ECDH1_DERIVE

CKM_ECDH1_COFACTOR_DERIVE

CKM_GENERIC_SECRET_KEY_GEN

CKM_AES_KEY_GEN

CKM_AES_ECB

CKM_AES_CBC

CKM_AES_CBC_PAD

CKM_AES_CTR

CKM_AES_CCM

CKM_AES_GCM

CKM_AES_MAC_GENERAL

CKM_AES_MAC

CKM_AES_CMAC

CKM_AES_GMAC

CKM_AES_OFB

CKM_AES_KEY_WRAP
2

CKM_AES_KEY_WRAP_PAD
2

CKM_AES_KEY_WRAP_KWP
2

CKM_DES_KEY_GEN

CKM_DES_ECB

CKM_DES_CBC

CKM_DES_CBC_PAD

CKM_DES_MAC_GENERAL

CKM_DES_MAC

Supported Mechanisms and Function Mapping

 Page 59 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_CBC_PAD

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

CKM_DES_ECB_ENCRYPT_DATA

CKM_DES_CBC_ENCRYPT_DATA

CKM_DES3_ECB_ENCRYPT_DATA

CKM_DES3_CBC_ENCRYPT_DATA

CKM_AES_ECB_ENCRYPT_DATA

CKM_AES_CBC_ENCRYPT_DATA

CKM_MD5

CKM_MD5_HMAC_GENERAL

CKM_MD5_HMAC

CKM_MD5_KEY_DERIVATION

CKM_SHA_1

CKM_SHA_1_HMAC_GENERAL

CKM_SHA_1_HMAC

CKM_SHA1_KEY_DERIVATION

CKM_SHA224

CKM_SHA224_HMAC_GENERAL

CKM_SHA224_HMAC

CKM_SHA224_KEY_DERIVATION

CKM_SHA256

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_HMAC

 Supported Mechanisms and Function Mapping

Page 60 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_SHA256_KEY_DERIVATION

CKM_SHA384

CKM_SHA384_HMAC_GENERAL

CKM_SHA384_HMAC

CKM_SHA384_KEY_DERIVATION

CKM_SHA512

CKM_SHA512_HMAC_GENERAL

CKM_SHA512_HMAC

CKM_SHA512_KEY_DERIVATION

CKM_SHA3_224

CKM_SHA3_224_HMAC_GENERAL

CKM_SHA3_224_HMAC

CKM_SHA3_224_KEY_DERIVATION

CKM_SHA3_256

CKM_SHA3_256_HMAC_GENERAL

CKM_SHA3_256_HMAC

CKM_SHA3_256_KEY_DERIVATION

CKM_SHA3_384

CKM_SHA3_384_HMAC_GENERAL

CKM_SHA3_384_HMAC

CKM_SHA3_384_KEY_DERIVATION

CKM_SHA3_512

CKM_SHA3_512_HMAC_GENERAL

CKM_SHA3_512_HMAC

CKM_SHA3_512_KEY_DERIVATION

CKM_RIPEMD160

CKM_RIPEMD160_HMAC_GENERAL

CKM_RIPEMD160_HMAC

Supported Mechanisms and Function Mapping

 Page 61 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_XOR_BASE_AND_DATA

CKM_CONCATENATE_BASE_AND_KEY

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_EXTRACT_KEY_FROM_KEY

CKM_UTI_AES_KEY_WRAP
2

CKM_UTI_AES_KEY_WRAP_PAD
2

CKM_UTI_AES_KEY_WRAP_KWP
2

Table 17: List of supported mechanisms defined in the PKCS#11 standard

1 SR = SignRecover, VR = VerifyRecover

2 Single-part operations only

3 Single-part sign operations only

4 Wrap only

* As specified in PKCS #11 Cryptographic Token Interface Current Mechanisms Specification 3.00
Draft Version

12.2 Vendor Defined Mechanisms

The following table shows the PKCS#11 mechanisms provided by the CryptoServer, which are
not included in the PKCS#11 standard, and the PKCS#11 API functions supporting them.

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_ECDSA_SHA3_224

CKM_ECDSA_SHA3_256

CKM_ECDSA_SHA3_384

CKM_ECDSA_SHA3_512

 Supported Mechanisms and Function Mapping

Page 62 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

CKM_ECDSA_RIPEMD160

CKM_DSA_RIPEMD160

CKM_DES3_RETAIL_MAC

CKM_RSA_PKCS_MULTI
4, 5

CKM_RSA_X_509_MULTI
4, 5

CKM_ECDSA_MULTI
4, 5

CKM_DES_CBC_WRAP

CKM_AES_CBC_WRAP

CKM_ECKA
4

CKM_ECDSA_ECIES
2

Table 18: List of vendor defined mechanisms

1 SR = SignRecover, VR = VerifyRecover

2 Single-part operations only

3 Mechanism can only be used for wrapping, not for unwrapping

4 Single-part sign operations only

5 Mechanism can only be used for signing, not for verification

12.3 Public Object Support

Currently only CKK_RSA and CKK_EC public objects (CKA_PRIVATE == CK_FALSE) are
supported for the following operations:

C_GetAttributeValue

C_EncryptInit

C_Encrypt

C_EncryptUpdate

C_DecryptInit

C_Decrypt

C_DecryptUpdate

Supported Mechanisms and Function Mapping

 Page 63 of 76

C_SignInit

C_Sign

C_SignUpdate

C_VerifyInit

C_Verify

C_VerifyUpdate

C_WrapKey

C_UnwrapKey

 PKCS#11 API in FIPS Mode

Page 64 of 76

13 PKCS#11 API in FIPS Mode
In this chapter you find information about important restrictions applying when the
CryptoServer is used in FIPS mode. Additionally, a list of mechanisms defined in the PKCS#11
standard as well as some vendor specific ones that are supported by the different
cryptographic operations provided by the CryptoServer in FIPS mode is given.
The (validated) FIPS mode can only become active if the FIPS140 firmware module
(FLASH\fips140.msc) is loaded into the CryptoServer, and if additionally the dedicated FIPS-
validated firmware package has been loaded. The FIPS mode is set by the FIPS140 firmware
module.
If the FIPS140 firmware module has not been loaded, the CXI module starts in normal mode.
The following features are not yet available in FIPS mode:

■ Blinding configuration attribute CXI_PROP_CFG_ENFORCE_BLINDING

■ SHA-3 algorithms

■ AES CCM mode

■ Tenant Backup Keys

13.1 Padding Mechanisms in FIPS Mode

If the CryptoServer is operating in FIPS mode, the use of one RSA key with multiple padding
mechanisms is not allowed. Therefore, the additional CKA_ALLOWED_MECHANISMS key attribute
containing all supported padding mechanisms must be set prior to the key generation. It is
only allowed to choose one padding mechanism to be used with all supported hash
algorithms. The supported hash mechanisms must be defined explicitly.
The following table shows which combinations of padding mechanisms and hash algorithms
are supported and which constants represent them.

Combination of padding mechanism and
hash algorithm

Constant

PKCS1 padding mechanism

 SHA-224 hashing algorithm CKM_SHA224_RSA_PKCS

SHA-256 hashing algorithm CKM_SHA256_RSA_PKCS

SHA-384 hashing algorithm CKM_SHA384_RSA_PKCS

SHA-512 hashing algorithm CKM_SHA512_RSA_PKCS

PKCS#11 API in FIPS Mode

 Page 65 of 76

Combination of padding mechanism and
hash algorithm

Constant

PSS padding

 SHA-224 hashing algorithm CKM_SHA224_RSA_PKCS_PSS

SHA-256 hashing algorithm CKM_SHA256_RSA_PKCS_PSS

SHA-384 hashing algorithm CKM_SHA384_RSA_PKCS_PSS

SHA-512 hashing algorithm CKM_SHA512_RSA_PKCS_PSS

Table 19: Combinations of padding mechanisms and hash algorithms

The constants in the table represent combinations of hash algorithm and a padding
mechanism, e.g., CKM_SHA256_RSA_PKCS represents the combination of the SHA-256 hash
algorithm and the PKCS1 padding mechanism. A combination is an or value of the
corresponding hash algorithm constant and the padding mechanism constant.
When creating a key, one or several of the above combinations may be set as an attribute of
the key. Use either one or several of the combinations with PKCS1 padding or one or several
of the combinations with PSS padding but never use two or more combinations with different
padding mechanisms.
Example:
CK_MECHANISM_TYPE mechs[] = {CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS};

You must always explicitly use at least one combination.
The following example shows how to generate and use an RSA key pair applying the PKCS1
padding mechanism (CKM_RSA_PKCS, i.e., RSASSA-PKCS-V1_5 from the [PKCS#1] standard)
and two hash algorithms, SHA-256 and SHA-384, i.e., CKM_SHA256_RSA_PKCS and
CKM_SHA384_RSA_PKCS are applied.

// Key generation

CK_MECHANISM_TYPE mechs[] = {CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS};

 CK_ATTRIBUTE publicKeyTemplate[] =

 {

 {CKA_TOKEN, &bTrue, sizeof(bTrue)},

 {CKA_VERIFY, &bTrue, sizeof(bTrue)},

 {CKA_ALLOWED_MECHANISMS, &mechs, sizeof(mechs)},

 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},

 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)}

 };

 CK_ATTRIBUTE privateKeyTemplate[] =

 {

 {CKA_TOKEN, &bTrue, sizeof(bTrue)},

 {CKA_PRIVATE, &bTrue, sizeof(bTrue)},

 PKCS#11 API in FIPS Mode

Page 66 of 76

 {CKA_ID, id, sizeof(id)},

 {CKA_SENSITIVE, &bTrue, sizeof(bTrue)},

 {CKA_SIGN, &bTrue, sizeof(bTrue)},

 {CKA_ALLOWED_MECHANISMS, &mechs, sizeof(mechs)},

 {CKA_LABEL, label, sizeof(label)}

 };

mechanism.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;

mechanism.pParameter = NULL;

mechanism.ulParameterLen = 0;

 if ((err = pFunctions->C_GenerateKeyPair(hSession, &mechanism,

 publicKeyTemplate,

sizeof(publicKeyTemplate)/sizeof(CK_ATTRIBUTE),

 privateKeyTemplate,

sizeof(privateKeyTemplate)/sizeof(CK_ATTRIBUTE),

 &hPublicKey, &hPrivateKey)) != 0)

 {

 printf("C_GenerateKeyPair returned 0x%08x\n", err);

 goto cleanup;

 }

// Key usage preparation

// If you want to use SHA-256 hash algorithm and the PKCS1 padding

// mechanism, use the following line:

mechanism.mechanism = CKM_SHA256_RSA_PKCS;

// If you want to use SHA-384 hash algorithm and the PKCS1 padding

// mechanism, use the following command instead:

// mechanism.mechanism = CKM_SHA384_RSA_PKCS;

mechanism.pParameter = NULL;

mechanism.ulParameterLen = 0;

// Key usage: Signing

if ((err = pFunctions->C_SignInit(hSession, &mechanism, hPrivateKey)) != 0)

 printf("C_SignInit returned 0x%08x\n", err);

signatureLength = sizeof(signature);

if ((err = pFunctions->C_Sign(hSession, Data, dataLength, signature,

 &signatureLength)) != 0)

 printf("C_Sign returned 0x%08x\n", err);

// Key usage: Verifying

if ((err = pFunctions->C_VerifyInit(hSession, &mechanism, hPublicKey)) !=

0)

 printf("C_VerifyInit returned 0x%08x\n", err);

if ((err = pFunctions->C_Verify(hSession, Data, dataLength, signature,

 signatureLength)) != 0)

PKCS#11 API in FIPS Mode

 Page 67 of 76

 printf("C_Verify returned 0x%08x\n", err);

Consider that the mechs variable defined in the following line
CK_MECHANISM_TYPE mechs[] = {CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS};

has to be used for the public key and the private key as shown in the following lines.
Otherwise, an error would be generated during the signing or verifying process..
 CK_ATTRIBUTE publicKeyTemplate[] =

 {

 //…

 {CKA_ALLOWED_MECHANISMS, &mechs, sizeof(mechs)},

 //…

 };

 CK_ATTRIBUTE privateKeyTemplate[] =

 {

 //…

 {CKA_ALLOWED_MECHANISMS, &mechs, sizeof(mechs)},

 //…

 };

If you want to use PSS padding instead, replace the following line in the key generation
section
CK_MECHANISM_TYPE mechs[] = {CKM_SHA256_RSA_PKCS, CKM_SHA384_RSA_PKCS};

by the following line, if you want to use SHA-256
CK_MECHANISM mechs[] = {CKM_SHA256_RSA_PKCS_PSS};

and replace the key usage preparation section by the following lines:
// Key usage preparation

CK_RSA_PKCS_PSS_PARAMS pssParam;

pssParam.hashAlg = CKM_SHA256;

pssParam.mgf = CKG_MGF1_SHA256;

pssParam.sLen = 16;

mechanism.mechanism = CKM_SHA256_RSA_PKCS_PSS;

mechanism.pParameter = &pssParam;

mechanism.ulParameterLen = sizeof(pssParam);

In the above examples, the public key is used for verifying (CKA_VERIFY) and the private key is
used for signing (CKA_SIGN). If you want to use for example the public key for encryption and
the private key for decryption instead, exchange CKA_VERIFY by CKA_ENCRYPT and CKA_SIGN
by CKA_DECRYPT in the above code. The rest of the code remains unchanged. Consider the
restrictions described in Chapter 13.2, “Key Usage in FIPS Mode”.

13.2 Key Usage in FIPS Mode

Each time a DSA/DH/DH_PKCS, RSA or EC (ECDSA or ECDH) key is generated or imported, it
must be checked that its usage attribute is exactly one of the {CKA_SIGN; CKA_VERIFY}

 PKCS#11 API in FIPS Mode

Page 68 of 76

usage bit group or exactly one of the {CKA_ENCRYPT, CKA_DECRYPT, CKA_DERIVE,
CKA_WRAP, CKA_UNWRAP} usage bit group. I.e., if key pairs are used for signature generation
and verification, they must not be used for any other purpose (see [FIPS186-4]). The CKA_*
values are defined in the pkcs11t.h file.
The following applies:

■ At least one of the usage bits of one of the groups is set, and all usage bits of the other
group must be zero.

■ If both usage bit groups contain bits that are set, the key generation or key import is
rejected and the command returns an error (B0680109 "Key usage is restricted in FIPS
mode").

■ If key usage is not set, it is set to default {CKA_SIGN; CKA_VERIFY}.

Example for the {CKA_SIGN; CKA_VERIFY} usage bit group:
A private key is used for signing and a public key is used for verifying.
//…

 CK_ATTRIBUTE publicKeyTemplate[] =

 {

 //…

 {CKA_VERIFY, &bTrue, sizeof(bTrue)},

 //…

 };

 CK_ATTRIBUTE privateKeyTemplate[] =

 {

 //…

 {CKA_SIGN, &bTrue, sizeof(bTrue)},

 //…

 };

//…

Example for the {CKA_ENCRYPT, CKA_DECRYPT, CKA_DERIVE, CKA_WRAP, CKA_UNWRAP}
usage bit group:
A public key is used for encrypting and a private key is used for decrypting.
//…

 CK_ATTRIBUTE publicKeyTemplate[] =

 {

 //…

 {CKA_ENCRYPT, &bTrue, sizeof(bTrue)},

 //…

 };

 CK_ATTRIBUTE privateKeyTemplate[] =

 {

 //…

PKCS#11 API in FIPS Mode

 Page 69 of 76

 {CKA_DECRYPT, &bTrue, sizeof(bTrue)},

 //…

 };

//…

The rest of the code in these two examples may be set according to the example in Chapter
13.1, “Padding Mechanisms in FIPS Mode”.

13.3 Mechanisms Supported in FIPS Mode for CryptoServer Se

The following table lists all mechanisms – defined in the PKCS#11 standard and the vendor
specific ones – supported by the CryptoServer Se-Series if it is operated in FIPS mode.

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

PKCS#11 Defined Mechanisms

CKM_RSA_PKCS_OAEP
2

CKM_RSA_PKCS_KEY_PAIR_GEN
2

CKM_RSA_X9_31_KEY_PAIR_GEN
2

CKM_RSA_PKCS_PSS

2

CKM_RSA_X9_31
2

CKM_SHA224_RSA_PKCS_PSS
2

CKM_SHA256_RSA_PKCS_PSS
2

CKM_SHA384_RSA_PKCS_PSS
2

CKM_SHA512_RSA_PKCS_PSS
2

CKM_EC_KEY_PAIR_GEN
(CKM_ECDSA_KEY_PAIR_GEN)

1

CKM_ECDSA
1

CKM_ECDH1_COFACTPR_DERIVE
1

CKM_GENERIC_SECRET_KEY_GEN

CKM_AES_KEY_GEN

CKM_AES_ECB

CKM_DES2_KEY_GEN
3

CKM_DES3_KEY_GEN
3

CKM_DES_ECB
3

3

 PKCS#11 API in FIPS Mode

Page 70 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

PKCS#11 Defined Mechanisms

CKM_DES3_CBC
3

3

CKM_DES3_CBC_PAD
3

3

CKM_DES3_MAC_GENERAL
3

CKM_DES3_MAC
3

CKM_SHA224

CKM_SHA224_HMAC_GENERAL

CKM_SHA224_HMAC

CKM_SHA256

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_HMAC

CKM_SHA384

CKM_SHA384_HMAC_GENERAL

CKM_SHA384_HMAC

CKM_SHA512

CKM_SHA512_HMAC_GENERAL

CKM_SHA512_HMAC

Vendor Defined Mechanisms

CKM_ECDSA_SHA224
1

CKM_ECDSA_SHA25
1

CKM_ECDSA_SHA384
1

CKM_ECDSA_SHA512
1

CKM_AES_CMAC

CKM_RSA_PKCS_MULTI
2

CKM_RSA_X_509_MULTI
2

CKM_ECKA
1

CKM_AES_OFB

 The mechanism is available in FIPS mode.

PKCS#11 API in FIPS Mode

 Page 71 of 76

1 NIST approved curves allowed for ECDSA and ECDH: P-192, P-224, P-256, P-384, P-521,
K-163, K-233, K-283, K-409, K-571, B-163, B-233, B-283, B-409, B-571 (see [FIPS186-2], Appendix 6)

2 In FIPS mode the key length of an RSA key must be min. 1024 bit.

3 Only DES keys with key length of min. 112 bit are supported.

13.4 Mechanisms Supported in FIPS Mode for CryptoServer CSe and
Se Gen2

The following table lists all mechanisms – defined in the PKCS#11 standard and the vendor
specific ones – supported by the CryptoServer CSe-Series and Se-Series Gen2 if it is operated
in FIPS mode.

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

PKCS#11 Defined Mechanisms

CKM_RSA_PKCS
8, 9

CKM_RSA_PKCS_OAEP
8, 9

CKM_RSA_PKCS_KEY_PAIR_GEN
1, 4

CKM_RSA_X9_31_KEY_PAIR_GEN
1, 4

CKM_RSA_X9_31

4, 7

CKM_SHA1_RSA_PKCS
7, 10

CKM_SHA224_RSA_PKCS
4, 7

CKM_SHA256_RSA_PKCS
4, 7

CKM_SHA384_RSA_PKCS
4, 7

CKM_SHA512_RSA_PKCS
4, 7

CKM_SHA1_RSA_PKCS_PSS
7, 10

CKM_SHA224_RSA_PKCS_PSS
4, 7

CKM_SHA256_RSA_PKCS_PSS
4, 7

CKM_SHA384_RSA_PKCS_PSS
4, 7

CKM_SHA512_RSA_PKCS_PSS
4, 7

CKM_DSA
11, 12

 PKCS#11 API in FIPS Mode

Page 72 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

PKCS#11 Defined Mechanisms

CKM_DSA_SHA1
10, 11, 12

CKM_DSA_SHA224
11, 12

CKM_DSA_SHA256
11, 12

CKM_DSA_SHA384
11, 12

CKM_DSA_SHA512
11, 12

CKM_DSA_KEY_PAIR_GEN
11, 12

CKM_DSA_PARAMETER_GEN
11, 12

CKM_EC_KEY_PAIR_GEN
(CKM_ECDSA_KEY_PAIR_GEN)

2

CKM_ECDSA
2, 3

CKM_ECDH1_COFACTPR_DERIVE
2, 11

CKM_GENERIC_SECRET_KEY_GEN

CKM_AES_KEY_GEN

CKM_AES_ECB

CKM_AES_CBC

CKM_AES_CBC_PAD

CKM_AES_CMAC

CKM_AES_KEY_WRAP
2

CKM_AES_KEY_WRAP_PAD
2

CKM_AES_KEY_WRAP_KWP
2

CKM_DES3_KEY_GEN
5

CKM_DES_ECB
5, 6

5, 6

CKM_DES3_CBC
5, 6

5, 6

CKM_DES3_CBC_PAD
5, 6

5, 6

CKM_DES3_MAC
5, 6

CKM_DH_PKCS_DERIVE
11

CKM_X9_42_DH_DERIVE
11

CKM_SHA224

PKCS#11 API in FIPS Mode

 Page 73 of 76

Mechanism

Functions

Encrypt

&

Decrypt

Sign

&

Verify

Digest
Gen.

Key/Key
Pair

Wrap

&

Unwrap

Derive

PKCS#11 Defined Mechanisms

CKM_SHA224_HMAC_GENERAL

CKM_SHA224_HMAC

CKM_SHA256

CKM_SHA256_HMAC_GENERAL

CKM_SHA256_HMAC

CKM_SHA384

CKM_SHA384_HMAC_GENERAL

CKM_SHA384_HMAC

CKM_SHA512

CKM_SHA512_HMAC_GENERAL

CKM_SHA512_HMAC

Vendor Defined Mechanisms

CKM_ECDSA_SHA1
2, 3 , 10

2

CKM_ECDSA_SHA224
2, 3

2

CKM_ECDSA_SHA25
2, 3

2

CKM_ECDSA_SHA384
2, 3

2

CKM_ECDSA_SHA512
2, 3

2

CKM_AES_CMAC

CKM_RSA_PKCS_MULTI
4

CKM_RSA_X_509_MULTI
4

CKM_ECKA
2

CKM_AES_CBC_WRAP

CKM_AES_OFB

 The mechanism is available in FIPS mode.

1 Restrictions on RSA padding mechanisms as described above in chapter 13.1.

 PKCS#11 API in FIPS Mode

Page 74 of 76

2 NIST approved curves allowed for EC key generation, ECDSA signing and ECDH key derivation:
P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409, B-571
(see [FIPS186-4], Appendix 6)

3 NIST approved curves allowed for ECDSA signature verification: P-192, P-224, P-256, P-384, P-521,
K-163, K-233, K-283, K-409, K-571, B-163, B-233, B-283, B-409, B-571 (see [FIPS186-2], Appendix 6)

4 Only RSA key with length of 2048 or 3072 bits is allowed for key and signature generation.

5 For DES key generation, encryption, MAC generation and key wrapping only key length of 24 byte
is supported.

6 For DES decryption, MAC verification and key unwrapping only key length of 24 byte is supported.

7 For RSA signature verification only RSA key length of min. 1024 bit is allowed.

8 For RSA key wrapping only RSA key length of min. 2048 bit is allowed.

9 For RSA key unwrapping only RSA key length of min. 1024 bit is allowed.

10 The mechanism is only allowed for signature verification.

11 For key and signature generation and key derivation only the following parameter length pairs are
allowed: |P|/|Q| = 2048/224, 2048/256 or 3072/256

12 For DSA signature verification, a |P|/|Q| parameter length of min. 1024/160 is allowed.

References

 Page 75 of 76

References
Reference Title/Company Document No.

[ANSI-X9.19] ANSI X9.19: Financial Institution Retail Message
Authentication, 1996/ANSI (American National
Standards Institute)

[ANSI-X9.63] ANSI X9.63: Public Key Cryptography for the
Financial Services Industry - Key Agreement and
Key Transport using Elliptic Curve Cryptography,
2001/ANSI (American National Standards
Institute).

[CSADMIN] CryptoServer – csadm Manual /Utimaco IS GmbH. 2009-0003

[CSMSADM] CryptoServer – Administration Manual
/Utimaco IS GmbH.

M010-0001-en

[CS_PKCS11CAT] CryptoServer – PKCS#11 P11CAT - Manual
/Utimaco IS GmbH.

M013-0001-en

[CS_PKCS11T2] CryptoServer – PKCS#11 p11tool2 – Reference
Manual/Utimaco IS GmbH.

2012-0014

[FIPS186-2] FIPS PUB 186-2, Digital Signature
Standard/National Institute of Standards and
Technology (NIST), January 2000.

[FIPS186-4] FIPS PUB 186-4, Digital Signature
Standard/National Institute of Standards and
Technology (NIST), July 2013.

[ISO-9797] ISO/IEC 9797-1:1999 - Information technology --
Security techniques -- Message Authentication
Codes (MACs) -- Part 1: Mechanisms using a block
cipher/International Organization for
Standardization, Geneva, Switzerland.

[PKCS#3] PKCS#3: Diffie-Hellman Key Agreement Standard
v1.4, November 1, 1993/RSA Laboratories.
Available: http://www.emc.com/emc-plus/rsa-
labs/standards-initiatives/pkcs-3-diffie-hellman-key-
agreement-standar.htm

[PKCS11] PKCS#11: Cryptographic Token Interface Standard
v2.20, June 28, 2004/RSA Laboratories. Available:
http://www.emc.com/emc-plus/rsa-labs/standards-

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

 References

Page 76 of 76

Reference Title/Company Document No.
initiatives/pkcs-11-cryptographic-token-interface-
standard.htm

[PKCS11BS] "PKCS #11 Cryptographic Token Interface Base
Specification Version 2.40," Committee
Specification 01, September 16, 2014/OASIS
Standard. Available: http://docs.oasis-
open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-
v2.40-cs01.html

[PKCS11ICMS] "PKCS #11 Cryptographic Token Interface Current
Mechanisms Specification Version 2.40,"
Committee Specification 01, September 16,
2014/OASIS Standard. Available: http://docs.oasis-
open.org/pkcs11/pkcs11-curr/v2.40/cs01/pkcs11-curr-
v2.40-cs01.html

[PKCS#1] PKCS#1: RSA Cryptography Standard v2.1,
June 14, 2002/RSA Laboratories. Available:
http://www.emc.com/emc-plus/rsa-labs/standards-
initiatives/pkcs-rsa-cryptography-standard.htm

[SEC1] SEC1: Elliptic Curve Cryptography – Certicom
Research – May 21, 2009, Version 2.0.

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/cs01/pkcs11-base-v2.40-cs01.html
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-rsa-cryptography-standard.htm

	1 Introduction
	1.1 About this Document
	1.1.1 Target Audience for This Manual
	1.1.2 Contents of This Manual
	1.1.3 Document Conventions

	1.2 Recommended Reading

	2 The PKCS#11 R2 Interface - Overview
	3 Requirements
	3.1 Required Firmware Package
	3.2 Location of the Configuration File cs_pkcs11_R2.cfg

	4 Configuration
	4.1 The Parameter Device
	4.2 Logging

	5 Operating Modes
	5.1 Load Balancing Mode
	5.2 Failover Mode
	5.3 Initialization of Slot and User PIN in Failover/Load Balancing Mode

	6 Internal and External Key Storage
	7 Development of a PKCS#11 Application
	7.1 Libraries

	8 Runtime
	8.1 Initialization
	8.2 Limited Data Length
	8.2.1 Key Wrapping with AES GCM/CCM
	8.2.2 Initialization Vector Length for AES GCM
	8.2.3 Data Length for Key Wrapping with AES GCM/CCM

	8.3 Multithreading

	9 Authentication Concept
	9.1 Standard Authentication Concept
	9.2 Enhanced Authentication Concept
	9.2.1 Create Users with Other Authentication Mechanisms
	9.2.2 Login User with Other Authentication Mechanisms
	9.2.3 Change PIN for Other Authentication Mechanisms
	9.2.4 Authentication via Configuration File
	9.2.5 Automatic Login of Administrator via Configuration File
	9.2.6 Authentication According to the Two-Person Rule
	9.2.7 Extended Login
	9.2.8 Key Manager and Key User Role
	9.2.9 Create and Login the Key Manager

	10 Key Management Functions in PKCS#11
	11 Vendor Defined PKCS#11 Extensions
	11.1 CryptoServer Defined Mechanisms
	11.2 Encryption with the “Elliptic Curve Integrated Encryption Scheme” (ECIES)
	11.3 Sign and Verify Using the DES Retail-MAC
	11.4 Multiple Signature Mechanisms
	11.5 Configuration Objects
	11.5.1 Local Configuration Object
	11.5.2 Global CryptoServer Configuration Object
	11.5.3 CryptoServer Slot Configuration Objects

	12 Supported Mechanisms and Function Mapping
	12.1 PKCS#11 Defined Mechanisms
	12.2 Vendor Defined Mechanisms
	12.3 Public Object Support

	13 PKCS#11 API in FIPS Mode
	13.1 Padding Mechanisms in FIPS Mode
	13.2 Key Usage in FIPS Mode
	13.3 Mechanisms Supported in FIPS Mode for CryptoServer Se
	13.4 Mechanisms Supported in FIPS Mode for CryptoServer CSe and Se Gen2

	References

